In this paper, we evaluate the performance of a vehicle-to-vehicle (V2V) system where full-duplex relay (FDR) harvests the energy from source and uses decode-and-forward (DF) protocol to forward data from source to destination. Unlike existing works about FDR systems, we consider the scenario that both relay and destination are moving vehicles, leading to the channel between relay and destination characterized by double (cascade) Rayleigh fading. We successfully obtain the closed-form mathematical expressions of the outage probability (OP) and throughput of the considered energy harvesting- (EH-) FDR-V2V system. Based on these expressions, the system performance is investigated through various scenarios. Numerical results indicate that the performance of the considered system is reduced compared with that of the system over Rayleigh fading channels. We also observe that there is an optimal EH time duration that minimizes the OP and maximizes the throughput. This value depends on the transmission power of source. Furthermore, the OP goes to outage floor faster due to the impact of the residual self-interference (RSI), especially when RSI is high. All analysis results are verified by Monte-Carlo simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.