a b s t r a c tAntimicrobials, parasiticides, feed additives and probiotics are used in Asian aquaculture to improve the health status of the cultured organisms and to prevent or treat disease outbreaks. Detailed information on the use of such chemicals in Asian aquaculture is limited, but of crucial importance for the evaluation of their potential human health and environmental risks. This study reports the outcomes of a survey on the use of chemical and biological products in 252 grow-out aquaculture farms and 56 farm supply shops in four countries in Asia. The survey was conducted between 2011 and 2012, and included nine aquaculture farm groups: Penaeid shrimp farms in Bangladesh, China, Thailand and Vietnam; Macrobrachium prawn farms, and farms producing both Penaeid shrimps and Macrobrachium prawns in Bangladesh; tilapia farms in China and Thailand; and Pangasius catfish farms in Vietnam. Results were analysed with regard to the frequencies of use of active ingredients and chemical classes, reported dosages, and calculated applied mass relative to production. A range of farm management and farm characteristics were used as independent variables to explain observed chemical use patterns reported by farmers within each group. Sixty different veterinary medicinal ingredients were recorded (26 antibiotics, 19 disinfectants, and 15 parasiticides). The use of antibiotic treatments was found to be significantly higher in the Vietnamese Pangasius farms. However, total quantities of antibiotics, relative to production, applied by the Pangasius farmers were comparable or even lower than those reported for other animal production commodities. Semi-intensive and intensive shrimp farms in China, Thailand and Vietnam showed a decrease in the use of antibiotic treatments. These farm groups utilised the largest amount of chemicals relative to production, with feed additives and plant extracts, probiotics, and disinfectants, being the most used chemical classes, mainly for disease prevention. The surveyed farmers generally did not exceed recommended dosages of veterinary medicines, and nationally or internationally banned compounds were (with one exception) reported neither by the surveyed farmers, nor by the surveyed chemical sellers. Factors underlying the observed differences in chemical use patterns differed widely amongst farm groups, and geographical location was found to be the only factor influencing chemical ingredient application patterns in the majority of the studied farm groups.
We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aquatic food products. Our starting hypothesis was that different production systems are associated with significantly different environmental impacts, as the production of these aquatic species differs in intensity and management practices. In order to test this hypothesis, we estimated each system's global warming, eutrophication, and freshwater ecotoxicity impacts. The contribution to these impacts and the overall dispersions relative to results were propagated by Monte Carlo simulations and dependent sampling. Paired testing showed significant (p < 0.05) differences between the median impacts of most production systems in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions powered by renewable energy sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.