This paper presents a new form of the autonomous underwater vehicle with a built-in subsystem of cylinder and counterbalance to support floating and diving, the electrical and mechanical system is built-in a modular form for easy integration and disassembly - mounting and expanding the system. In particular, show optimal calculation for diving robot's profile, simulating stress, deformation impact on the profile of the robot to select the hull's material and thickness to make sure the robot is durable and steady at a depth of 50m. The paper also presents advantages of hybrid design between traditional AUV which uses propeller and rudder to turn and glider using counterbalance and cylinder to dive. In addition, the design of the control system for the robot is also mentioned and clarified through the selection of sensors, actuators, designing electrical circuit, designing 600W thruster and tri-axis rotation angles estimator for stable operation of the robot at a depth of 50m. In addition, the paper also presents the dynamic model of the diving robot VIAMAUV2000, from which, builds, simulates and applies controller for diving robot in two main forms: using thruster (AUV mode) and not using thruster (Glider mode).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.