Nuclear factor of activated T cells 5 (NFAT5) has been implicated in the pathogenesis of various human diseases, including cancer and arthritis. However, therapeutic agents inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of > 40,000 chemicals was screened for the suppression of nitric oxide, a direct target regulated by NFAT5 activity, through high-throughput screening. We validated the anti-NFAT5 activity of 198 primary hit compounds using an NFAT5-dependent reporter assay and identified the novel NFAT5 suppressor KRN2, 13-(2-fluoro)-benzylberberine, and its derivative KRN5. KRN2 inhibited NFAT5 upregulation in macrophages stimulated with lipopolysaccharide and repressed the formation of NF-κB p65-DNA complexes in the NFAT5 promoter region. Interestingly, KRN2 selectively suppressed the expression of pro-inflammatory genes, including Nos2 and Il6, without hampering high-salt-induced NFAT5 and its target gene expressions. Moreover, KRN2 and KRN5, the latter of which exhibits high oral bioavailability and metabolic stability, ameliorated experimentally induced arthritis in mice without serious adverse effects, decreasing pro-inflammatory cytokine production. Particularly, orally administered KRN5 was stronger in suppressing arthritis than methotrexate, a commonly used anti-rheumatic drug, displaying better potency and safety than its original compound, berberine. Therefore, KRN2 and KRN5 can be potential therapeutic agents in the treatment of chronic arthritis.
We have synthesized 50 benzimidazole (BMZ) derivatives with 1,2‐phenylenediamines and aromatic aldehydes under mild oxidation conditions by using inexpensive, nontoxic inorganic salt sodium metabisulfite in a one‐pot condensation reaction and screened their ability to interfere with Zika virus (ZIKV) infection utilizing a cell‐based phenotypic assay. Seven BMZs inhibited an African ZIKV strain with a selectivity index (SI=CC50/EC50) of 9–37. Structure‐activity relationship analysis demonstrated that substitution at the C‐2, N‐1, and C‐5 positions of the BMZ ring were important for anti‐ZIKV activity. The hybrid structure of BMZ and naphthalene rings was a structural feature responsible for the high anti‐ZIKV activity. Importantly, BMZs inhibited ZIKV in human neural stem cells, a physiologically relevant system considering the severe congenital anomalies, like microcephaly, caused by ZIKV infection. Compound 39 displayed the highest antiviral efficacy against the African ZIKV strain in Huh‐7 (SI>37) and neural stem cells (SI=12). Compound 35 possessed the highest activity in Vero cells (SI=115). Together, our data indicate that BMZs derivatives have to be considered for the development of ZIKV therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.