Nanoscale defects on a substrate affect the sliding motion of water droplets. Using in situ transmission electron microscopy imaging, we visualized the depinning dynamics of water nanodroplets from gold nanoparticles on a flat SiNx surface. Our observations showed that nanoscale pinning effects of the gold nanoparticle oppose the lateral forces, resulting in stretching, even breakup, of the water nanodroplet. Using continuum long wave theory, we modeled the dynamics of a nanodroplet depinning from a nanoparticle of comparable length scales, and the model results are consistent with experimental findings and show formation of a capillary bridge prior to nanodroplet depinning. Our findings have important implications on surface cleaning at the nanoscale.
We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.