In this study, 16 gas phase complexes of the pairs of XCHZ and CO(2) (X = F, Cl, Br; Z = O, S) have been identified. Interaction energies calculated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level including both BSSE and ZPE corrections range from -5.6 to -10.5 kJ mol(-1) for XCHOCO(2) and from -5.7 to -9.1 kJ mol(-1) for XCHS···CO(2). Substitution of one H atom by one halogen in formaldehyde and thioformaldehyde reduces the interaction energy of XCHZ···CO(2), while a CH(3) substitution increases the interaction energy of both CH(3)CHO···CO(2) and CH(3)CHS···CO(2). NBO and AIM analyses also point out that the strength of Lewis acid-base interactions decreases going from >C1=S3···C6 to >C1=O3C6 and to >C1-X4···C6. This result suggests the higher capacity of solubility of thiocarbonyl compounds in scCO(2), providing an enormous potential application for designing CO(2)-philic materials based on the >C=S functional group in competition with >C=O. The Lewis acid-base interaction of the types >C=S···C, >C-Cl···C and >C-Br···C is demonstrated for the first time. The contribution of the hydrogen bonding interaction to the total interaction energy is larger for XCHS···CO(2) than for XCHO···CO(2). Upon complexation, a contraction of the C1-H2 bond length and a blue shift of its stretching frequency have been observed, as compared to the isolated monomer, indicating the existence of a blue-shifting hydrogen bond in all complexes examined. Calculated results also lend further support for the viewpoint that when acting as proton donor, a C-H bond having a weaker polarization will induce a stronger distance contraction and frequency blue shift upon complexation, and vice versa.
Weak interactions of monosubstituted formaldehydes and thioformaldehydes with nitrosyl hydride were investigated by using ab initio MO calculations at the MP2/aug-cc-pVTZ level. Thirty two equilibrium structures having different complex forms were located on the corresponding potential energy surfaces (all having C(s) symmetry). Obtained binding energies, which include both ZPE and BSSE corrections, range from 7 to 14 kJ x mol(-1) and 6 to 12 kJ x mol(-1) for complexes of substituted formaldehydes and thioformaldehydes, respectively. In each geometrical structure, the (XCHO,HNO) complex is consistently more stable than the (XCHS,HNO) complex. The H-bond strength significantly increases when one H atom is replaced by a methyl group in both formaldehyde and thioformaldehyde. When replacing H by a halogen atom, the binding energy tends to decrease. It is remarkable that all the C-H and N-H bonds are shortened upon complexation, resulting in an increase of their stretching frequencies. Furthermore, the blue shifts are consistently observed for the interacting N-H bonds in N-H...X, Z, with X = F, Cl, Br, and Z = O, S; such contraction of a covalent N-H bond is extremely rare. In addition, the N-H bond length contraction and its frequency blue shift in the N-H...S complex have been revealed for the first time.
The hydrogen-bonded complexes formed from interaction of trihalomethanes CHX(3) (X = F, Cl, Br) with nitrosyl hydride HNO were studied using ab initio MO calculations at the second-order perturbation theory (MP2/6-311++G(d,p)). Each interaction contains at least five separate equilibrium structures. Calculated binding energies range from 4 to 8 kJ mol(-1) with both ZPE and BSSE corrections. While CHBr(3) leads to the most stable complexes with HNO, CHF(3) forms the least stable counterparts. The strength of complexes thus tends to increase from F to Cl to Br, which is consistent with a decrease of deprotonation enthalpy of the corresponding C-H bonds. It is remarkable that all the C-H and N-H bonds are shortened upon complexation, giving rise to an increase of their stretching frequencies. A blue shift is thus observed for the N-H bonds of the type N-HX (X = F, Cl, Br); such a contraction of the covalent N-H bond is extremely rare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.