Thiopeptides, formed by replacing the amide oxygen atom with a sp(2) sulfur atom, are useful in protein engineering and drug design because they confer resistance to enzymatic degradation and are predicted to be more rigid. This report describes our free molecular dynamics simulations with explicit water and free energy calculations on the effects of thio substitutions on the conformation of alpha-helices, 3(10)-helices, and their relative stability. The most prominent structural effect of thio substitution is the increase in the hydrogen bond distance from 2.1 A for normal peptides to 2.7 A for thiopeptides. To accommodate for the longer C[double bond]S...H-N hydrogen bond, the (phi, psi) dihedral angles of the alpha-helix changed from (-66 degrees, -42 degrees) to (-68 degrees, -38 degrees), and the rise per turn increased from 5.5 to 6.3 A. For 3(10)-helices, the (phi, psi) dihedral angles (-60 degrees, -20 degrees) and rise per turn (6.0 A) changed to (-66 degrees, -12 degrees) and 6.8 A, respectively. In terms of relative stability, the most prominent change upon thio substitution is the decrease in the free energy difference, Delta A(alpha --> 3(10)), from 14 to 3.5 kcal/mol. Therefore, normal peptides are less likely to form 3(10)-helix than are thiopeptides. Component analysis of the Delta A(alpha --> 3(10)) reviews that the entropy advantage of the 3(10)-helix for both Ac-Ala(10)-NHMe and Act-Alat(10)-NHMe is attributed to the 3(10)-helix being more flexible than the alpha-helix. Interestingly, upon thio substitution, this differential flexibility is even more apparent because the alpha-helix conformation of Act-Alat(10)-NHMe becomes more rigid due to the bulkier sulfur atom.
Beta-turns are important topological motifs for biological recognition of proteins and peptides. Organic molecules that sample the side chain positions of beta-turns have shown broad binding capacity to multiple different receptors, for example benzodiazepines. Beta-turns have traditionally been classified into various types based on the backbone dihedral angles (phi2, psi2, phi3 and psi3). Indeed, 57-68% of beta-turns are currently classified into 8 different backbone families (Type I, Type II, Type I', Type II', Type VIII, Type VIa1, Type VIa2 and Type VIb and Type IV which represents unclassified beta-turns). Although this classification of beta-turns has been useful, the resulting beta-turn types are not ideal for the design of beta-turn mimetics as they do not reflect topological features of the recognition elements, the side chains. To overcome this, we have extracted beta-turns from a data set of non-homologous and high-resolution protein crystal structures. The side chain positions, as defined by C(alpha)-C(beta) vectors, of these turns have been clustered using the kth nearest neighbor clustering and filtered nearest centroid sorting algorithms. Nine clusters were obtained that cluster 90% of the data, and the average intra-cluster RMSD of the four C(alpha)-C(beta) vectors is 0.36. The nine clusters therefore represent the topology of the side chain scaffold architecture of the vast majority of beta-turns. The mean structures of the nine clusters are useful for the development of beta-turn mimetics and as biological descriptors for focusing combinatorial chemistry towards biologically relevant topological space.
Noncoded amino acids such as isobutyric acid have been used extensively in the process of drug design and protein engineering. This article focuses on a noncoded amino acid where the oxygen in the peptide unit is replaced with a sp 2 sulfur. It was hypothesized that the conformational space as well as the conformational preferences of thiopeptides will be more restricted and altered by the bulkier atom with different electrostatic properties. In vacuo conformational minima as well as associated energies for the thio-substituted alanine dipeptides were calculated at the ab initio HF/6-31G * level. When the bulkier sulfur atom acts as a hydrogen bond acceptor in the C 5 conformation or in the C axial 7 and C equatorial 7 CONFORMATIONAL ANALYSIS OF THIOPEPTIDES S n−1 · · ·C β atoms, respectively. Thio substitution at the carboxyl terminal restricts the conformations near ψ = 60, −60, and 180, which correspond with increase overlaps between S n · · ·C β , S n · · ·H β and S n · · ·N n atoms, respectively. The effects of dithio substitutions of either the alanine or the glycine dipeptides are similar to the combined effects of the two single thio substitutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.