This paper proposes a method for calculating the minimum amount of power load needed to shed and distributing it for each load bus in order to recover the frequency and voltage back to the allowable range. Based on the consideration of the primary control of the turbine governor and the reserve power of the generators for secondary control, the minimum amount of load shedding was calculated in order to recover the frequency of the power system. Computation and analysis of Voltage Sensitivity Index (VSI) of the load bus to prioritize distribution of the amount power load shedding at these positions. The lower the load bus have the Voltage Sensitivity Index (VSI), the higher the amount of load shedding will shed and vice versa. With this technique, frequency and voltage value are still within allowable range, and a large amount of load shedding could be avoided, hence, saved from economic losses, and customer service interruption. The effectiveness of the proposed method tested on the IEEE 37 bus 9 generators power system standard has demonstrated the effectiveness of this method.
Due to the very high nonlinearity of the power system, traditional analytical methods take a lot of time to solve, causing delay in decision-making. Therefore, quickly detecting power system instability helps the control system to make timely decisions become the key factor to ensure stable operation of the power system. Power system stability identification encounters large data set size problem. The need is to select representative variables as input variables for the identifier. This paper proposes to apply wrapper method to select variables. In which, Binary Particle Swarm Optimization (BPSO) algorithm combines with K-NN (K=1) identifier to search for good set of variables. It is named BPSO&1-NN. Test results on IEEE 39-bus diagram show that the proposed method achieves the goal of reducing variables with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.