IMPORTANCE Hypoglycemia is a critical obstacle to the care of patients with type 1 diabetes. Sensor-augmented insulin pump with automated low-glucose insulin suspension has the potential to reduce the incidence of major hypoglycemic events.OBJECTIVE To determine the incidence of severe and moderate hypoglycemia with sensor-augmented pump with low-glucose suspension compared with standard insulin pump therapy. DESIGN, SETTING, AND PARTICIPANTSA randomized clinical trial involving 95 patients with type 1 diabetes, recruited from December 2009 to January 2012 in Australia.INTERVENTIONS Patients were randomized to insulin pump only or automated insulin suspension for 6 months. MAIN OUTCOMES AND MEASURESThe primary outcome was the combined incidence of severe (hypoglycemic seizure or coma) and moderate hypoglycemia (an event requiring assistance for treatment). In a subgroup, counterregulatory hormone responses to hypoglycemia were assessed using the hypoglycemic clamp technique. RESULTSOf the 95 patients randomized, 49 were assigned to the standard-pump (pump-only) therapy and 46 to the low-glucose suspension group. The mean (SD) age was 18.6 (11.8) years; duration of diabetes, 11.0 (8.9) years; and duration of pump therapy, 4.1 (3.4) years. The baseline rate of severe and moderate hypoglycemic events in the pump-only group was 20.7 vs 129.6 events per 100 patient months in the low-glucose suspension group. After 6 months of treatment, the event rates decreased from 28 to 16 in the pump-only group vs 175 to 35 in the low-glucose suspension group. The adjusted incidence rate per 100 patient-months was 34.2 (95% CI, 22.0-53.3) for the pump-only group vs 9.5 (95% CI, 5.2-17.4) for the low-glucose suspension group. The incidence rate ratio was 3.6 (95% CI, 1.7-7.5; P <.001). There was no change in glycated hemoglobin in either group: mean, 7.4 (95% CI, 7.2-7.6) to 7.4 (95% CI, 7.2-7.7) in the pump-only group vs mean, 7.6 (95%, CI, 7.4-7.9) to 7.5 (95% CI, 7.3-7.7) in the low-glucose suspension group. Counterregulatory hormone responses to hypoglycemia were not changed. There were no episodes of diabetic ketoacidosis or hyperglycemia with ketosis.CONCLUSIONS AND RELEVANCE Sensor-augmented pump therapy with automated insulin suspension reduced the combined rate of severe and moderate hypoglycemia in patients with type 1 diabetes.
Summary Background The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity. Methods We did a random-order crossover study in volunteers at least 18 years old who had type 1 diabetes and lived within a 30 min drive of four sites in the USA. Participants were randomly assigned (1:1) in blocks of two using sequentially numbered sealed envelopes to glycaemic regulation with a bihormonal bionic pancreas or usual care (conventional or sensor-augmented insulin pump therapy) first, followed by the opposite intervention. Both study periods were 11 days in length, during which time participants continued all normal activities, including athletics and driving. The bionic pancreas was initialised with only the participant’s body mass. Autonomously adaptive dosing algorithms used data from a continuous glucose monitor to control subcutaneous delivery of insulin and glucagon. The coprimary outcomes were the mean glucose concentration and time with continuous glucose monitoring (CGM) glucose concentration less than 3·3 mmol/L, analysed over days 2–11 in participants who completed both periods of the study. This trial is registered with ClinicalTrials.gov, number NCT02092220. Findings We randomly assigned 43 participants between May 6, 2014, and July 3, 2015, 39 of whom completed the study: 20 who were assigned to bionic pancreas first and 19 who were assigned to the comparator first. The mean CGM glucose concentration was 7·8 mmol/L (SD 0·6) in the bionic pancreas period versus 9·0 mmol/L (1·6) in the comparator period (difference 1·1 mmol/L, 95% CI 0·7–1·6; p<0·0001), and the mean time with CGM glucose concentration less than 3·3 mmol/L was 0·6% (0·6) in the bionic pancreas period versus 1·9% (1·7) in the comparator period (difference 1·3%, 95% CI 0·8–1·8; p<0·0001). The mean nausea score on the Visual Analogue Scale (score 0–10) was greater during the bionic pancreas period (0·52 [SD 0·83]) than in the comparator period (0·05 [0·17]; difference 0·47, 95% CI 0·21–0·73; p=0·0024). Body mass and laboratory parameters did not differ between periods. There were no serious or unexpected adverse events in the bionic pancreas period of the study. Interpretation Relative to conventional and sensor-augmented insulin pump therapy, the bihormonal bionic pancreas, initialised only with participant weight, was able to achieve superior glycaemic regulation without the need for carbohydrate counting. Larger and longer studies are needed to establish the long-term benefits and risks of automated glycaemic management with a bihormonal bionic pancreas. Funding National Institute of Diabetes and Digestive and Kidney Diseases of the...
Purpose The first hybrid closed loop (HCL) system, which automates insulin delivery but requires user inputs, was approved for treatment of type 1 diabetes (T1D) by the US Food and Drug Administration in September 2016. The purpose of this study was to explore the benefits, expectations, and attitudes of individuals with T1D following a clinical trial of an HCL system. Methods Thirty-two individuals with T1D (17 adults, 15 adolescents) participated in focus groups after 4 to 5 days of system use. Content analysis generated themes regarding perceived benefits, hassles, and limitations. Results Some participants felt misled by terms such as "closed loop" and "artificial pancreas," which seemed to imply a more "hands-off" experience. Perceived benefits were improved glycemic control, anticipated reduction of long-term complications, better quality of life, and reduced mental burden of diabetes. Hassles and limitations included unexpected tasks for the user, difficulties wearing the system, concerns about controlling highs, and being reminded of diabetes. Conclusion Users are willing to accept some hassles and limitations if they also perceive health and quality-of-life benefits beyond current self-management. It is important for clinicians to provide a balanced view of positives and negatives to help manage expectations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.