Many apicomplexan parasites, including Plasmodium falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event. The exact molecular mechanisms directing the transport of nuclear-encoded proteins to the apicoplast of P. falciparum are not well understood. Recently, in silico analyses revealed a second copy of proteins homologous to components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) system in organisms with secondary plastids, including the malaria parasite P. falciparum. These proteins are predicted to be endowed with an apicoplast targeting signal and are suggested to play a role in the transport of nuclear-encoded proteins to the apicoplast. Here, we have studied components of this ERAD-derived putative preprotein translocon complex in malaria parasites. Using transfection technology coupled with fluorescence imaging techniques we can demonstrate that the N terminus of several ERAD-derived components targets green fluorescent protein to the apicoplast. Furthermore, we confirm that full-length PfsDer1-1 and PfsUba1 (homologues of yeast ERAD components) localize to the apicoplast, where PfsDer1-1 tightly associates with membranes. Conversely, PfhDer1-1 (a host-specific copy of the Der1-1 protein) localizes to the ER. Our data suggest that ERAD components have been "rewired" to provide a conduit for protein transport to the apicoplast. Our results are discussed in relation to the nature of the apicoplast protein transport machinery.
The sexual blood stage of the human malaria parasite Plasmodium falciparum undergoes remarkable biophysical changes as it prepares for transmission to mosquitoes. During maturation, midstage gametocytes show low deformability and sequester in the bone marrow and spleen cords, thus avoiding clearance during passage through splenic sinuses. Mature gametocytes exhibit increased deformability and reappear in the peripheral circulation, allowing uptake by mosquitoes. Here we define the reversible changes in erythrocyte membrane organization that underpin this biomechanical transformation. Atomic force microscopy reveals that the length of the spectrin crossmembers and the size of the skeletal meshwork increase in developing gametocytes, then decrease in mature-stage gametocytes. These changes are accompanied by relocation of actin from the erythrocyte membrane to the Maurer's clefts. Fluorescence recovery after photobleaching reveals reversible changes in the level of coupling between the membrane skeleton and the plasma membrane. Treatment of midstage gametocytes with cytochalasin D decreases the vertical coupling and increases their filterability. A computationally efficient coarse-grained model of the erythrocyte membrane reveals that restructuring and constraining the spectrin meshwork can fully account for the observed changes in deformability.gametocyte | deformability | spectrin/actin skeleton | AFM | molecular dynamics simulation T he most virulent of the human malaria parasites, Plasmodium falciparum causes ∼440,000 deaths annually (1). Pathology is associated with asexual multiplication within red blood cells (RBCs). The trophozoite (growing) and schizont (dividing) stages (∼24-48 h after invasion) sequester in deep tissue using adhesive proteins presented on platform-like structures called "knobs" at the infected RBC surface. Cytoadhesion enables the parasite to avoid passage through the splenic sinuses and thus mechanical clearance from the circulation. Unfortunately, complications associated with sequestration of infected RBCs in the brain are responsible for much of the malaria-related mortality and morbidity.After a period of asexual cycling, a proportion of blood-stage parasites commit to sexual development (gametocytogenesis). The intraerythrocytic gametocyte develops through five distinct stages (I-V) over a period of 10-12 d, eventually adopting the characteristic crescent (falciform) shape that gives P. falciparum its name. Elongation is driven by assembly of a sheath of microtubules, attached to an inner membrane complex, underneath the parasite plasma membrane. From stage II to IV, gametocytes disappear from the circulation (2, 3); however, the mechanism of sequestration is not well understood. Upon maturation, the microtubule cytoskeleton is disassembled, and stage V gametocytes re-enter the circulation (2, 3). Ingestion of mature gametocytes by an Anopheles mosquito triggers release from the RBCs, followed by sexual recombination in the insect gut, and eventual transmission.
Erythroid cells, specifically red blood cells (RBCs), are constantly exposed to highly reactive radicals during cellular gaseous exchange. Such exposure often exceeds the cells' innate anti-oxidant defense systems, leading to progressive damage and eventual senescence. One of the contributing factors to this process are alterations to hemoglobin conformation and globin binding to red cell cytoskeleton. However, in addition to the aforementioned changes, it is possible that oxidative damage induces critical changes to the erythrocyte cytoskeleton and corresponding bio-mechanical and nano-structural properties of the red cell membrane. To quantitatively characterize how oxidative damage accounts for such changes, we employed single-cell manipulation techniques such as micropipette aspiration and atomic force microscopy (AFM) on RBCs. These investigations demonstrated visible morphological changes upon chemically induced oxidative damage (using hydrogen peroxide, diamide, primaquine bisphosphate and cumene hydroperoxide). Our results provide previously unavailable observations on remarkable changes in red cell cytoskeletal architecture and membrane stiffness due to oxidative damage. Furthermore, we also demonstrate that a pathogen that infects human blood cells, Plasmodium falciparum was unable to penetrate through the oxidant-exposed RBCs that have damaged cytoskeleton and stiffer membranes. This indicates the importance of bio-physical factors pertinent to aged RBCs and it's relevance to malaria infectivity.
Erythropoiesis is marked by progressive changes in morphological, biochemical and mechanical properties of erythroid precursors to generate red blood cells (RBC). The earliest enucleated forms derived in this process, known as reticulocytes, are multi-lobular and spherical. As reticulocytes mature, they undergo a series of dynamic cytoskeletal re-arrangements and the expulsion of residual organelles, resulting in highly deformable biconcave RBCs (normocytes). To understand the significant, yet neglected proteome-wide changes associated with reticulocyte maturation, we undertook a quantitative proteomics approach. Immature reticulocytes (marked by the presence of surface transferrin receptor, CD71) and mature RBCs (devoid of CD71) were isolated from human cord blood using a magnetic separation procedure. After sub-fractionation into triton-extracted membrane proteins and luminal samples (isobaric tags for relative and absolute quantitation), quantitative mass spectrometry was conducted to identify more than 1800 proteins with good confidence and coverage. While most structural proteins (such as Spectrins, Ankyrin and Band 3) as well as surface glycoproteins were conserved, proteins associated with microtubule structures, such as Talin-1/2 and ß-Tubulin, were detected only in immature reticulocytes. Atomic force microscopy (AFM)-based imaging revealed an extended network of spectrin filaments in reticulocytes (with an average length of 48 nm), which shortened during reticulocyte maturation (average spectrin length of 41 nm in normocytes). The extended nature of cytoskeletal network may partly account for increased deformability and shape changes, as reticulocytes transform to normocytes.
The phylum Apicomplexa includes many human and animal pathogens, such as Plasmodium falciparum (human malaria) and Toxoplasma gondii (human and animal toxoplasmosis). Widespread resistance to current antimalarials and the lack of a commercial vaccine necessitate novel pharmacological interventions with distinct modes of action against malaria. For toxoplasmosis, new drugs to effectively eliminate tissue-dwelling latent cysts of the parasite are needed. The Malaria Box antimalarial collection, managed and distributed by the Medicines for Malaria Venture, includes molecules of novel chemical classes with proven antimalarial efficacy. Using targeted phenotypic assays of P. falciparum and T. gondii, we have identified a subset of the Malaria Box molecules as potent inhibitors of plastid segregation and parasite invasion and egress, thereby providing early insights into their probable mode of action. Five molecules that inhibit the egress of both parasites have been identified for further mechanistic studies. Thus, the approach we have used to identify novel molecules with defined modes of action in multiple parasites can expedite the development of pan-active antiparasitic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.