Multi-class classification is one of the major challenges in machine learning and an ongoing research issue. Classification algorithms are generally binary, but they must be extended to multi-class problems for real-world application. Multi-class classification is more complex than binary classification. In binary classification, only the decision boundaries of one class are to be known, whereas in multiclass classification, several boundaries are involved. The objective of this investigation is to propose a metaheuristic, optimized, multi-level classification learning system for forecasting in civil and construction engineering. The proposed system integrates the firefly algorithm (FA), metaheuristic intelligence, decomposition approaches, the one-against-one (OAO) method, and the least squares support vector machine (LSSVM). The enhanced FA automatically fine-tunes the hyperparameters of the LSSVM to construct an optimized LSSVM classification model. Ten benchmark functions are used to evaluate the performance of the enhanced optimization algorithm. Two binary-class datasets related to geotechnical engineering, concerning seismic bumps and soil liquefaction, are then used to clarify the application of the proposed system to binary problems. Further, this investigation uses multi-class cases in civil engineering and construction management to verify the effectiveness of the model in the diagnosis of faults in steel plates, quality of water in a reservoir, and determining urban land cover. The results reveal that the system predicts faults in steel plates with an accuracy of 91.085%, the quality of water in a reservoir with an accuracy of 93.650%, and urban land cover with an accuracy of 87.274%. To demonstrate the effectiveness of the proposed system, its predictive accuracy is compared with that of a non-optimized baseline model, single multi-class classification algorithms (sequential minimal optimization (SMO), the Multiclass Classifier, the Naïve Bayes, the library support vector machine (LibSVM) and logistic regression) and prior studies. The analytical results show that the proposed system is promising project analytics software to help decision makers solve multi-level classification problems in engineering applications.
Traditional methods of recombinant protein purification are uneconomic and inconvenient to the secreted proteins at large-volume. CBM3a, a module from cellulosome’s scaffoldin of Clostridium thermocellum, directs the binding of the cellulase complex on the cheap cellulose substrate. Most of previous studies about CBM3a fused with cellulases as the purification tag were conducted in intracellular Escherichia coli system. In this research, we used the extracellular Bacillus subtilis WB800N expression system to investigate the CBM3a-tag fused with endoglucanase CelA into plasmid pHT. The results indicated that protein CelA was secrected and purified by CBM3a-tag binding on the Regenerated Amorphous Cellulose (RAC) subtrate. This can be used for further improvement in protein purification tag designing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.