Background Invasive meningococcal disease (IMD) persists in military units in Vietnam despite the availability of antibiotics and vaccines. A hindrance to reducing the incidence of IMD in Vietnam is a lack of molecular data from isolates of the causative agent, Neisseria meningitidis from this country. Here, we characterized key genetic and epidemiological features of an invasive N. meningitidis isolate from a military unit in Vietnam using whole-genome sequencing. Methods Neisseria meningitidis was isolated from a conscript admitted for meningitis and tested against seven antibiotics. DNA from the isolate was extracted and sequenced using the Illumina HiSeq platform. Denovo assembly and scaffolding were performed to construct a draft genome assembly, from which genes were predicted and functionally annotated. Genome analysis included epidemiological characterization, genomic composition and identification of antibiotic resistance genes. Results Susceptibility testing of the isolate showed high levels of resistance to chloramphenicol and diminished susceptibility to ampicillin and rifampicin. A draft genome of ~ 2.1 Mb was assembled, containing 2451 protein coding sequences, 49 tRNAs and 3 rRNAs. Fifteen coding sequences sharing ≥ 84% identity with known antibiotic resistance genes were identified. Genome analysis revealed abundant repetitive DNAs and two prophages. Epidemiological typing revealed newly described sequence type, antigenic finetype and Bexsero ® Antigen Sequence Typing (BAST). The BAST profile showed no coverage by either Bexsero ® or Trumenba ® . Conclusions Our results present the first genome assembly of an invasive N. meningitidis isolate from a military unit in Vietnam. This study illustrates the usefulness of whole genome sequencing (WGS) analysis for epidemiological and antibiotic resistance studies and surveillance of IMD in Vietnam.
Background Neisseria meningitidis remains the main cause of sporadic meningitis and sepsis in military camps in Vietnam. Yet, very limited molecular data of their genotypic and epidemiological characteristics are available from Vietnam, and particularly the military environment. Whole genome sequencing (WGS) has proven useful for meningococcal disease surveillance and guiding preventative vaccination programs. Previously, we characterized key genetic and epidemiological features of an invasive N. meningitidis B isolate from a military unit in Vietnam. Here, we extend these findings by sequencing two additional invasive N. meningitidis B isolated from cerebrospinal fluid (CSF) of two meningitis cases at another military unit and compared their genomic sequences and features. We also report the sequence types and antigenic profiles of 25 historical and more recently emerged N. meningitidis isolates from these units and other units in proximity. Methods Strains were sequenced using the Illumina HiSeq platform, de novo assembled and annotated. Genomes were compared within and between military units, as well as against the global N. meningitidis collection and other isolates from the Southeast Asia region using PubMLST. Variations at the nucleotide level were determined, and phylogenetic relationships were estimated. Antigenic genotypes and vaccine coverage were analyzed using gMATS and PubMLST. Susceptibility of isolates against commonly used antibiotic agents was examined using E-test. Results Genome comparison revealed a high level of similarity among isolates both within and between units. All isolates showed resistance to chloramphenicol and carried identical catP gene with other Southeast Asian isolates, suggesting a common lineage. Their antigenic genotypes predicted no coverage by either Bexsero®or Trumenba®, and nucleotide variation analysis revealed diverse new, unassigned alleles at multiple virulence loci of all strains. Groups of singleton and unique novel sequence types extending beyond individual camps were found from epidemiological data of 25 other isolates. Our results add to the sparse published molecular data of N. meningitidis in the military units in Vietnam, highlight their diversity, distinct genetic features and antibiotic resistance pattern, and emphasize the need for further studies on the molecular characteristics of N. meningitidis in Vietnam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.