Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.
In order to understand the nervous system, it is necessary to know the synaptic connections between the neurons, yet to date, only the wiring diagram of the adult hermaphrodite of the nematode Caenorhabditis elegans has been determined. Here, we present the wiring diagram of the posterior nervous system of the C. elegans adult male, reconstructed from serial electron micrograph sections. This region of the male nervous system contains the sexually dimorphic circuits for mating. The synaptic connections, both chemical and gap junctional, form a neural network with four striking features: multiple, parallel, short synaptic pathways directly connecting sensory neurons to end organs; recurrent and reciprocal connectivity among sensory neurons; modular substructure; and interneurons acting in feedforward loops. These features help to explain how the network robustly and rapidly selects and executes the steps of a behavioral program on the basis of the inputs from multiple sensory neurons.
Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner.
A rate-limiting step in determining a connectome, the set of all synaptic connections in a nervous system, is extraction of the relevant information from serial electron micrographs. Here we introduce a software application, Elegance, that speeds acquisition of the minimal dataset necessary, allowing the discovery of new connectomes. We have used Elegance to obtain new connectivity data in the nematode worm Caenorhabditis elegans. We analyze the accuracy that can be obtained, which is limited by unresolvable ambiguities at some locations in electron microscopic images. Elegance is useful for reconstructing connectivity in any region of neuropil of sufficiently small size.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.