These results demonstrate that adult marrow cells can be recruited to airway epithelium and induced to express Cftr in mice otherwise lacking this protein. However, the number of observed chimeric epithelial cells is small and new strategies for enhancing airway epithelial remodeling by adult bone marrow-derived cells will be necessary for correction of defective CFTR-dependent chloride transport.
The emergence of high-throughput, high-density genotyping methods combined with increasingly powerful computing systems has created opportunities to further discover and exploit the genes controlling agronomic performance in elite maize breeding populations. Understanding the genetic basis of population structure in an elite set of materials is an essential step in this genetic discovery process. This paper presents a genotype-based population analysis of all maize inbreds whose Plant Variety Protection certificates had expired as of the end of 2013 (283 inbreds) as well as 66 public founder inbreds. The results provide accurate population structure information and allow for important inferences in context of the historical development of North American elite commercial maize germplasm. Genotypic data was obtained via genotyping-by-sequencing on 349 inbreds. After filtering for missing data, 77,314 high-quality markers remained. The remaining missing data (average per individual was 6.22 percent) was fully imputed at an accuracy of 83 percent. Calculation of linkage disequilibrium revealed that the average r2 of 0.20 occurs at approximately 1.1 Kb. Results of population genetics analyses agree with previously published studies that divide North American maize germplasm into three heterotic groups: Stiff Stalk, Non-Stiff Stalk, and Iodent. Principal component analysis shows that population differentiation is indeed very complex and present at many levels, yet confirms that division into three main sub-groups is optimal for population description. Clustering based on Nei’s genetic distance provides an additional empirical representation of the three main heterotic groups. Overall fixation index (FST), indicating the degree of genetic divergence between the three main heterotic groups, was 0.1361. Understanding the genetic relationships and population differentiation of elite germplasm may help breeders to maintain and potentially increase the rate of genetic gain, resulting in higher overall agronomic performance.
Adult marrow-derived stem cells can localize to lung and acquire immunophenotypic characteristics of lung epithelial cells. Lung injury increases recruitment of the marrow-derived cells. We speculated that comparing patterns of lung engraftment following different lung injuries would provide insight into potential mechanisms by which marrow-derived cells were recruited to lung. To evaluate this, adult female C57Bl/6 mice irradiated and engrafted with marrow from adult male transgenic GFP mice were exposed to either intranasal inhalation of endotoxin (25 microg/mouse) or 3 days of 25 ppm NO(2) and then compared 1 or 3 months later to transplanted but otherwise uninjured mice. In all cases, the majority of marrow-derived cells recruited to lung were CD45(+) leukocytes. In lungs of transplanted but otherwise uninjured mice, small numbers of CD45(-) donor-derived cells in alveolar septae stained positively for pro-surfactant protein C. Rare donor-derived cells located in the airway epithelium stained positively with cytokeratin. Subsequent exposure of engrafted mice to NO(2) or endotoxin did not significantly increase the number or pattern of donor-derived CD45(-) cells found in recipient lungs. These results suggest that NO(2) or endotoxin lung injury does not result in significant engraftment of marrow-derived cells in lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.