In many metazoans, damaged and potentially dangerous cells are rapidly eliminated by apoptosis. In Drosophila, this is often compensated for by extraproliferation of neighboring cells, which allows the organism to tolerate considerable cell death without compromising development and body size. Despite its importance, the mechanistic basis of such compensatory proliferation remains poorly understood. Here, we show that apoptotic cells express the secretory factors wingless (wg) and decapentaplegic (dpp). When cells undergoing apoptosis were kept alive with the caspase inhibitor p35, excessive nonautonomous cell proliferation was observed. Significantly, wg signaling is necessary and, at least in some cells, also sufficient for mitogenesis under these conditions. Finally, we provide evidence that the DIAP1 antagonists reaper and hid can activate the JNK pathway and that this pathway is required for inducing wg and cell proliferation. These findings support a model where apoptotic cells activate signaling cascades for compensatory proliferation.
Inhibitor of Apoptosis Proteins (IAPs) are frequently overexpressed in tumors and have become promising targets for developing anti-cancer drugs. IAPs can be inhibited by natural antagonists, but a physiological requirement of mammalian IAP antagonists remains to be established. Here we show that deletion of the mouse Sept4 gene, which encodes the IAP antagonist ARTS, promotes tumor development. Sept4-null mice have increased numbers of hematopoietic stem and progenitor cells, elevated XIAP protein, increased resistance to cell death, and accelerated tumor development in an Em-Myc background. These phenotypes are partially suppressed by inactivation of XIAP. Our results suggest that apoptosis plays an important role as a frontline defense against cancer by restricting the number of normal stem cells.[Keywords: Apoptosis; cancer; tumor suppressor; IAP; stem cells; lymphoma] Supplemental material is available at http://www.genesdev.org.
Atrial natriuretic factor (ANF) inhibits proliferation in non-myocardial cells and is thought to be anti-hypertrophic in cardiomyocytes. We investigated the possibility that the anti-hypertrophic actions of ANF involved the mitogen-activated protein kinase signal transduction cascade. Cultured neonatal rat ventricular myocytes treated for 48 h with the ␣ 1 -adrenergic agonist phenylephrine (PE) had an 80% increase in cross-sectional area (CSA). ANF alone had no effect but inhibited PE-induced increases in CSA by approximately 50%. The mitogen-activated protein kinase/ERK kinase (MEK) inhibitor PD098059 minimally inhibited PE-induced increases in CSA, but it completely abolished ANF-induced inhibition of PE-induced increases. ANF-induced extracellular signal-regulated protein kinase (ERK) nuclear translocation was also eliminated by PD098059. ANF treatment caused MEK phosphorylation and activation but failed to activate any of the Raf isoforms. ANF induced a rapid increase in ERK phosphorylation and in vitro kinase activity. PE also increased ERK activity, and the combined effect of ANF and PE appeared to be additive. ANF-induced ERK phosphorylation was eliminated by PD098059. ANF induced minimal phosphorylation of JNK or p38, indicating that its effect on ERK was specific. ANF-induced activation of ERK was mimicked by cGMP analogs, suggesting that ANF-induced ERK activation involves the guanylyl cyclase activity of the ANF receptor. These data suggest that there is an important linkage between cGMP signaling and the mitogen-activated protein kinase cascade and that selective ANF activation of ERK is required for the anti-hypertrophic action of ANF. Thus, ANF expression might function as the natural defense of the heart against maladaptive hypertrophy through its ability to activate ERK.
Adult stem cells are essential for tissue homeostasis and wound repair. Their proliferative capacity must be tightly regulated to prevent the emergence of unwanted and potentially dangerous cells, such as cancer cells. We found that mice deficient for the proapoptotic Sept4/ARTS gene have elevated numbers of hair follicle stem cells (HFSCs) that are protected against apoptosis. Sept4/ARTS−/− mice display marked improvement in wound healing and regeneration of hair follicles. These phenotypes depend on HFSCs, as indicated by lineage tracing. Inactivation of XIAP, a direct target of ARTS, abrogated these phenotypes and impaired wound healing. Our results indicate that apoptosis plays an important role in regulating stem cell–dependent regeneration and suggest that this pathway may be a target for regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.