Actin and myosin IIA have been implicated in the inward movement of receptor clusters at the immunological synapse of T lymphocytes. This study defines their spatial organization and quantifies their relative contributions to the dynamics of receptor clusters at the immunological synapse.
TCR-dependent signaling events have been observed to occur in TCR microclusters. We found that some TCR microclusters are present in unstimulated murine T cells, indicating that the mechanisms leading to microcluster formation do not require ligand binding. These preexisting microclusters increase in absolute number following engagement by low-potency ligands. This increase is accompanied by an increase in cell spreading, with the result that the density of TCR microclusters on the surface of the T cell is not a strong function of ligand potency. In characterizing their composition, we observed a constant number of TCRs in a microcluster, constitutive exclusion of the phosphatase CD45, and preassociation with the signaling adapters LAT and Grb2. The existence of TCR microclusters prior to ligand binding in a state that is conducive for the initiation of downstream signaling could in part explain the rapid kinetics with which TCR signal transduction occurs.
Signaling is initiated through the T Cell Receptor (TCR) when it is engaged by antigenic peptide fragments bound by Major Histocompatibility Complex (pMHC) proteins expressed on the surface of antigen presenting cells (APCs). The TCR complex is composed of the ligand binding TCRαβ heterodimer that associates non-covalently with CD3 dimers (the εδ and εγ heterodimers and the ζζ homodimer) 1 . Upon engagement of the receptor, the CD3 ζ chains are phosphorylated by the Src family kinase, Lck. This leads to the recruitment of the Syk family kinase, Zap70, which is then phosphorylated and activated by Lck. After that, Zap70 phosphorylates the adapter proteins LAT and SLP76, initiating the formation of the proximal signaling complex containing a large number of different signaling molecules 2 .The formation of this complex eventually results in calcium and Ras-dependent transcription factor activation and the consequent initiation of a complex series of gene expression programs that give rise to T cell differentiation . TCR signals (and the resulting state of differentiation) are modulated by many other factors, including antigen potency and crosstalk with co-stimulatory/co-inhibitory, chemokine, and cytokine receptors [3][4] . Studying the spatial and temporal organization of the proximal signaling complex under various stimulation conditions is, therefore, key to understanding the TCR signaling pathway as well as its regulation by other signaling pathways.One very useful model system to study signaling initiated by the TCR at the plasma membrane in T cells is glass-supported lipid bilayers, as described previously [5][6] . They can be utilized to present antigenic pMHC complexes, adhesion, and co-stimulatory molecules to T cellsserving as artificial APCs. By imaging the T cells interacting with the lipid bilayer using total internal reflection fluorescence microscopy (TIRFM), we can restrict the excitation to within 100 nm of the space between the glass and the cell surface [7][8] . This allows us to image primarily the signaling events occurring at the plasma membrane. As we are interested in imaging the recruitment of signaling proteins to the TCR complex, we describe a two-camera TIRF imaging system wherein the TCR, labeled with fluorescent Fab (fragment antigen binding) fragments of the H57 antibody (purified from hybridoma H57-597, ATCC, ATCC Number:HB-218) which is specific for TCRβ, and signaling proteins, tagged with GFP, may be imaged simultaneously and in real time. This strategy is necessary due to the highly dynamic nature of both the T cells and of the signaling events that are occurring at the TCR. This imaging modality has allowed researchers to image single ligands 9-11 as well as recruitment of signaling molecules to activated receptors and is an excellent system to study biochemistry in-situ [12][13][14][15][16] . Video LinkThe video component of this article can be found at https://www.jove.com/video/3892/ ProtocolExperimental Procedure: Transfection using Amaxa Mouse T Cell Nucleofector K...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.