The COVID-19 (Coronavirus disease-2019) pandemic, caused by the SARS-CoV-2 coronavirus, is a significant threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and MERS-CoV. Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analysis for all three viruses. Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-CoV-2 Orf9b, an interaction we structurally characterized using cryo-EM. Combining genetically-validated host factors with both COVID-19 patient genetic data and medical billing records identified important molecular mechanisms and potential drug treatments that merit further molecular and clinical study.
The plasticity of aging suggests that longevity may be controlled epigenetically by specific alterations in chromatin state. The link between chromatin and aging has mostly focused on histone deacetylation by the Sir2 family1,2, but less is known about the role of other histone modifications in longevity. Histone methylation plays a crucial role during development and in maintaining stem cell pluripotency in mammals3. Regulators of histone methylation have been associated with aging in worms4,5,6,7 and flies8, but characterization of their role and mechanism of action has been limited. Here we identify the ASH-2 trithorax complex9, which trimethylates histone H3 at lysine 4 (H3K4), as a regulator of lifespan in C. elegans in a directed RNAi screen in fertile worms. Deficiencies in members of the ASH-2 complex–ASH-2 itself, WDR-5, and the H3K4 methyltransferase SET-2 extend worm lifespan. Conversely, the H3K4 demethylase RBR-2 is required for normal lifespan, consistent with the idea that an excess of H3K4 trimethylation–a mark associated with active chromatin–is detrimental for longevity. Lifespan extension induced by ASH-2 complex deficiency requires the presence of an intact adult germline and the continuous production of mature eggs. ASH-2 and RBR-2 act in the germline, at least in part, to regulate lifespan and to control a set of genes involved in lifespan determination. These results suggest that the longevity of the soma is regulated by an H3K4 methyltransferase/demethylase complex acting in the C. elegans germline.
Chromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendents. The histone H3 lysine 4 trimethylation (H3K4me3) complex composed of ASH-2, WDR-5, and the histone methyltransferase SET-2 regulates C. elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5, or SET-2 in the parental generation extend the lifespan of descendents up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendents. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendents.
Efficient precision genome editing requires a quick, quantitative, and inexpensive assay of editing outcomes. Here we present ICE (Inference of CRISPR Edits), which enables robust batch analysis of CRISPR edits using Sanger data. ICE proposes potential editing outcomes for single guide, multiplex editing, base editing, and homology-directed repair experiments and then determines which are supported by the data via regression. Additionally, we develop a score called ICE-D (Discordance) that can provide information on large or unexpected edits. We empirically confirm through over 1,800 edits that the ICE algorithm is robust, reproducible, and can analyze CRISPR experiments within days after transfection. We also confirm that ICE strongly correlates with NGS analysis (Amp-Seq). ICE is an improvement over current analysis tools in that it provides batch analysis, is free to use, and can detect a wider variety of edits. It provides investigators with a reliable editing tool that can significantly expedite CRISPR editing workflows. Our ICE tool is available online at ice.synthego.com and the source code is at github.com/synthego-open/ice
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.