Signal transduction underlying bacterial chemotaxis involves excitatory phosphorylation and feedback control through deamidation and methylation of sensory receptors. The structure of a complex between the signal-terminating phosphatase, CheC, and the receptor-modifying deamidase, CheD, reveals how CheC mimics receptor substrates to inhibit CheD and how CheD stimulates CheC phosphatase activity. CheD resembles other cysteine deamidases from bacterial pathogens that inactivate host Rho-GTPases. CheD not only deamidates receptor glutamine residues contained within a conserved structural motif but also hydrolyzes glutamyl-methyl-esters at select regulatory positions. Substituting Gln into the receptor motif of CheC turns the inhibitor into a CheD substrate. Phospho-CheY, the intracellular signal and CheC target, stabilizes the CheC:CheD complex and reduces availability of CheD. A point mutation that dissociates CheC from CheD impairs chemotaxis in vivo. Thus, CheC incorporates an element of an upstream receptor to influence both its own effect on receptor output and that of its binding partner, CheD.
Rapid restoration of prestimulus levels of the chemotactic response regulator, CheY-P, is important for preparing bacteria and archaea to respond sensitively to new stimuli. In an extension of previous work (Szurmant, H., Bunn, M. W., Cannistraro, V. J., and Ordal, G. W. (2003) J. Biol. Chem. 278, 48611-48616), we describe a new family of CheY-P phosphatases, the CYX family, that is widespread among the bacteria and archaea. These proteins provide another pathway, in addition to the ones involving CheZ of the ␥-and -proteobacteria (e.g. Escherichia coli) or the alternative CheY that serves as a "phosphate sink" among the ␣-proteobacteria (e.g. Sinorhizobium meliloti), for dephosphorylating CheY-P. In particular, we identify CheC, known previously to be involved in adaptation to stimuli in Bacillus subtilis, as a CheY-P phosphatase. Using an in vitro assay used previously to demonstrate that the switch protein FliY is a CheY-P phosphatase, we have shown that increasing amounts of CheC accelerate the hydrolysis of CheY-P. In vivo, a double mutant lacking cheC and the region of fliY that encodes the CheY-P binding domain is almost completely smooth swimming, implying that these cells contain very high levels of CheY-P. CheC appears to be primarily involved in restoring normal CheY-P levels following the addition of attractant, whereas FliY seems to act on CheY-P constitutively. The activity of CheC is relatively low compared to that of FliY, but we have shown that the chemotaxis protein CheD enhances the activity of CheC 5-fold. We suggest a model for how FliY, CheC, and CheD work together to regulate CheY-P levels in the bacterium.
The bacterial chemotaxis system is one of the most extensively studied signal transduction systems in biology. The response regulator CheY controls flagellar rotation and is phosphorylated by the CheA histidine kinase to its active form. CheC is a CheY-P phosphatase, and this activity is enhanced in a CheC-CheD heterodimer. CheC is also critical for chemotactic adaptation, the return to the prestimulus system state despite persistent attractant concentrations. Here, CheC point mutants were examined in Bacillus subtilis for in vivo complementation and in vitro activity. The mutants were identified separating the three known abilities of CheC: CheD binding, CheY-P binding, and CheY-P phosphatase activity. Remarkably, the phosphatase ability was not as critical to the in vivo function of CheC as the ability to bind both CheY-P and CheD. Additionally, it was confirmed that CheY-P increases the affinity of CheC for CheD, the later of which is known to be necessary for receptor activation of CheA. These data suggest a model of CheC as a CheY-P-induced regulator of CheD. Here, CheY-P would cause CheC to sequester CheD from the chemoreceptors, inducing adaptation of the chemotaxis system. This model represents the first plausible means for feedback from the output of the system, CheY-P, to the receptors.
Bacterial chemotaxis involves the regulation of motility by a modified two-component signal transduction system. In Escherichia coli, CheZ is the phosphatase of the response regulator CheY but many other bacteria, including Bacillus subtilis, use members of the CheC-FliY-CheX family for this purpose. While Bacillus subtilis has only CheC and FliY, many systems also have CheX. The effect of this three-phosphatase system on chemotaxis has not been studied previously. CheX was shown to be a stronger CheY-P phosphatase than either CheC or FliY. In Bacillus subtilis, a cheC mutant strain was nearly complemented by heterologous cheX expression. CheX was shown to overcome the ⌬cheC adaptational defect but also generally lowered the counterclockwise flagellar rotational bias. The effect on rotational bias suggests that CheX reduced the overall levels of CheY-P in the cell and did not truly replicate the adaptational effects of CheC. Thus, CheX is not functionally redundant to CheC and, as outlined in the discussion, may be more analogous to CheZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.