Using degeneration techniques, we prove the correspondence of tropical curve counts and log Gromov-Witten invariants with general incidence and psi-class conditions in toric varieties for genus zero curves and all non-superabundant higher-genus situations. We also relate the log invariants to the ordinary ones, in particular explaining the appearance of negative multiplicities in the descendant correspondence result of Mark Gross.
In many real-world reinforcement learning problems, we have access to an existing dataset and would like to use it to evaluate various learning approaches. Typically, one would prefer not to deploy a fixed policy, but rather an algorithm that learns to improve its behavior as it gains more experience. Therefore, we seek to evaluate how a proposed algorithm learns in our environment, meaning we need to evaluate how an algorithm would have gathered experience if it were run online. In this work, we develop three new evaluation approaches which guarantee that, given some history, algorithms are fed samples from the distribution that they would have encountered if they were run online. Additionally, we are the first to propose an approach that is provably unbiased given finite data, eliminating bias due to the length of the evaluation. Finally, we compare the sample-efficiency of these approaches on multiple datasets, including one from a real-world deployment of an educational game.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.