Living in an enriched environment (EE) decreases adiposity, increases energy expenditure, causes resistance to diet induced obesity, and induces brown-like (beige) cells in white fat via activating a hypothalamic-adipocyte axis. Here we report that EE stimulated vascular endothelial growth factor (VEGF) expression in a fat depot-specific manner prior to the emergence of beige cells. The VEGF up-regulation was independent of hypoxia but required intact sympathetic tone to the adipose tissue. Targeted adipose overexpression of VEGF reproduced the browning effect of EE. Adipose-specific VEGF knockout or pharmacological VEGF blockade with antibodies abolished the induction of beige cell by EE. Hypothalamic brain-derived neurotrophic factor stimulated by EE regulated the adipose VEGF expression, and VEGF signaling was essential to the hypothalamic brain-derived neurotrophic factor-induced white adipose tissue browning. Furthermore, VEGF signaling was essential to the beige cells induction by exercise, a β3-adrenergic agonist, and a peroxisome proliferator-activated receptor-γ ligand, suggesting a common downstream pathway integrating diverse upstream mechanisms. Exploiting this pathway may offer potential therapeutic interventions to obesity and metabolic diseases.
With increases in life expectancy, it is vital to understand the dynamics of aging, their interaction with lifestyle factors, and the connections to age-related disease processes. Our work on environmental enrichment (EE), a housing environment boosting mental health, has revealed a novel anticancer and anti-obesity phenotype mediated by a brain-fat axis: the hypothalamic-sympathoneural-adipocyte (HSA) axis in young animals. Here we investigated EE effects on healthspan and lifespan when initiated after middle age. Short-term EE for six weeks activated the HSA axis in 10-month-old mice. Long-term EE for twelve months reduced adiposity, improved glucose tolerance, decreased leptin levels, enhanced motor abilities, and inhibited anxiety. In addition to adipose remodeling, EE decreased age-related liver steatosis, reduced hepatic glucose production, and increased glucose uptake by liver and adipose tissue contributing to the improved glycemic control. The EE-induced liver modulation was associated with a suppression of protein kinase Cε. Moreover, EE down-regulated the expression of inflammatory genes in the brain, adipose, and liver. EE initiated at 18-month of age significantly improved glycemic control and showed a trend of positive impact on mean lifespan. These data suggest that EE induces metabolic and behavioral adaptations that are shared by factors known to increase healthspan and lifespan.
Adipose tissue plays an essential role in metabolic homeostasis and holds promise as an alternative depot organ in gene therapy. However, efficient methods of gene transfer into adipose tissue in vivo have yet to be established. Here, we assessed the transduction efficiency to fat depots by a family of novel engineered hybrid capsid serotypes (Rec1~4) recombinant adeno-associated viral (AAV) vectors in comparison with natural serotypes AAV1, AAV8, and AAV9. Rec2 serotype led to widespread transduction in both brown fat and white fat with the highest efficiency among the seven serotypes tested. As a proof-of-efficacy, Rec2 serotype was used to deliver Cre recombinase to adipose tissues of insulin receptor floxed animals. Insulin receptor knockdown led to decreased fat pad mass and morphological and molecular changes in the targeted depot. These novel hybrid AAV vectors can serve as powerful tools to genetically manipulate adipose tissue and provide valuable vehicles to gene therapy targeting adipose tissue.
Considering that impaired proximal insulin signaling is linked with diabetes, approaches that enhance glucose disposal independent of insulin signaling are attractive. In vitro data indicate that the E4ORF1 peptide derived from human adenovirus 36 (Ad36) interacts with cells from adipose tissue, skeletal muscle, and liver to enhance glucose disposal, independent of proximal insulin signaling. Adipocyte-specific expression of Ad36E4ORF1 improves hyperglycemia in mice. To determine the hepatic interaction of Ad36E4ORF1 in enhancing glycemic control, we expressed E4ORF1 of Ad36 or Ad5 or fluorescent tag alone by using recombinant adeno-associated viral vector in the liver of three mouse models. In db/db or diet-induced obesity (DIO) mice, hepatic expression of Ad36E4ORF1 but not Ad5E4ORF1 robustly improved glycemic control. In normoglycemic wild-type mice, hepatic expression of Ad36E4ORF1 lowered nonfasting blood glucose at a high dose of expression. Of note, Ad36E4ORF1 significantly reduced insulin levels in db/db and DIO mice. The improvement in glycemic control was observed without stimulation of the proximal insulin signaling pathway. Collectively, these data indicate that Ad36E4ORF1 is not a typical sensitizer, mimetic, or secretagogue of insulin. Instead, it may have insulin-sparing action, which seems to reduce the need for insulin and, hence, to reduce insulin levels.
Activation of the hypothalamus-adipocyte axis is associated with an antiobesity and anticancer phenotype in animal models of melanoma and colon cancer. Brain-derived neurotrophic factor (BDNF) is a key mediator in the hypothalamus leading to preferential sympathoneural activation of adipose tissue and the ensuing resistance to obesity and cancer. Here, we generated middle age obese mice by high fat diet feeding for a year and investigated the effects of hypothalamic gene transfer of BDNF on a hormone receptor-positive mammary tumor model. The recombinant adeno-associated viral vector-mediated overexpression of BDNF led to marked weight loss and decrease of adiposity without change of food intake. BDNF gene therapy improved glucose tolerance, alleviated steatosis, reduced leptin level, inhibited mouse breast cancer EO771 growth, and prevented the metastasis. The reduced tumor growth in BDNF-treated mice was associated with reduced angiogenesis, decreased proliferation, increased apoptosis, and reduced adipocyte recruitment and lipid accumulation. Moreover, BDNF gene therapy reduced inflammation markers in the hypothalamus, the mammary gland, the subcutaneous fat, and the mammary tumor. Our results suggest that manipulating a single gene in the brain may influence multiple mechanisms implicated in obesity-cancer association and provide a target for the prevention and treatment of both obesity and cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.