We present a combined experimental and computational study of surface segregation in thin films of nearly athermal blends of linear and bottlebrush polymers. The lengths of bottlebrush backbone (N b), bottlebrush side chain (N sc), and linear polystyrene host (N m) are systematically varied to examine the effects of polymer architecture on phase behavior. From the experiments, combinations of architectural parameters are identified that produce enrichment and depletion of bottlebrush at the polymer–air interface. These surface segregation behaviors are consistent with entropy-dominated thermodynamics. In addition, the experiments reveal conditions where bottlebrush and linear polymers are equally preferred at the surface. Simulations based on the self-consistent field theory (SCFT) qualitatively capture the three types of surface segregation behaviors and highlight the delicate interplay of entropic and enthalpic effects. Our investigations demonstrate that controlling both entropic and enthalpic driving forces is critical for the design of surface-active bottlebrush polymer additives.
In polymer blends and block copolymers, one constituent (or segment type) is often enriched at the surface. This enrichment has important consequences for a variety of surface functions, including wettability, adhesive interactions, and fouling resistance, and can also influence the structure that forms deeper into the bulk. Herein, we review the thermodynamic principles that control the attraction of polymers toward surfaces, emphasizing cases where entropic effects associated with molecular weight or architecture can compete with enthalpic preferences. While models and simulations have guided our understanding of this interplay, we show that it remains difficult to anticipate the outcomes when using chemically complex materials or nonequilibrium processing conditions. Nevertheless, it is possible to leverage established principles to tailor the wetting of polymers at surfaces, which is important for the design of membranes, coatings, lithographic materials, and thin film electronics.
The composition of polymer blends near interfaces can differ from the average blend composition because the attraction of each polymer toward surfaces is controlled by its chemistry, size, and architecture. In this work, we studied thin film blends of bottlebrush copolymers and linear homopolymers to understand the enthalpic and entropic effects that drive preferential segregation of one constituent to film interfaces. Bottlebrush copolymers containing polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains were blended with either linear PS or linear PMMA, and time-of-flight secondary ion mass spectroscopy was used to quantify the distribution of bottlebrushes through the film thickness as a function of homopolymer type, homopolymer molecular weight, and processing conditions. We found that the bottlebrush copolymers segregated to air and substrate interfaces above a critical molecular weight of the linear homopolymer, consistent with an entropic preference for chain ends and shorter chains toward the interfaces. This segregation was used to tailor the surface wettability of blend films using bottlebrush additives as a minority component. Modeling using self-consistent field theory highlighted effects of conformational entropy and enthalpic interactions in driving almost complete segregation from the interior of the films toward interfaces. Furthermore, enthalpic interactions were predicted to cause lateral phase segregation in cases where the homopolymer is preferred over the bottlebrush copolymer at the substrate, an effect that was also observed in experiments. This study demonstrates that bottlebrush copolymer additives can be designed to spontaneously segregate to surfaces in thermal blends, providing a possible route to decouple surface properties from bulk properties.
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used for chemical analysis of surfaces. ToF-SIMS is a powerful tool for polymer science because it detects a broad mass range with good mass resolution, thereby distinguishing between polymers that have similar elemental compositions and/or the same types of functional groups. Chemical labeling techniques that enhance contrast, such as deuterating or staining one constituent, are generally unnecessary. ToF-SIMS can generate both two-dimensional images and three-dimensional depth profiles, where each pixel in an image is associated with a complete mass spectrum. This Review begins by introducing the principles of ToF-SIMS measurements, including instrumentation, modes of operation, strategies for data analysis, and strengths/limitations when characterizing polymer surfaces. The sections that follow describe applications in polymer science that benefit from characterization by ToF-SIMS, including thin films and coatings, polymer blends, composites, and electronic materials. The examples selected for discussion showcase the three standard modes of operation (spectral analysis, imaging, and depth profiling) and highlight practical considerations that relate to experimental design and data processing. We conclude with brief comments about broader opportunities for ToF-SIMS in polymer science.
Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.