A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.
A two-dimensional (2D) lattice model defined on a triangular lattice with nearest-and next-nearest-neighbor interactions based on the Taylor-Socolar monotile is known to have a limit-periodic ground state. The system reaches that state during a slow quench through an infinite sequence of phase transitions. We study the model as a function of the strength of the next-nearest-neighbor interactions and introduce closely related 3D models with only nearest-neighbor interactions that exhibit limit-periodic phases. For models with no next-nearest-neighbor interactions of the Taylor-Socolar type, there is a large degenerate class of ground states, including crystalline patterns and limit-periodic ones, but a slow quench still yields the limit-periodic state. For the Taylor-Socolar lattic model, we present calculations of the diffraction pattern for a particular decoration of the tile that permits exact expressions for the amplitudes and identify domain walls that slow the relaxation times in the ordered phases. For one of the 3D models, we show that the phase transitions are first order, with equilibrium structures that can be more complex than in the 2D case, and we include a proof of aperiodicity for a geometrically simple tile with only nearest-neighbor matching rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.