A pattern matching method (signature-based) is widely used in basic network intrusion detection systems (IDS). A more robust method is to use a machine learning classifier to detect anomalies and unseen attacks. However, a single machine learning classifier is unlikely to be able to accurately detect all types of attacks, especially uncommon attacks e.g., Remote2Local (R2L) and User2Root (U2R) due to a large difference in the patterns of attacks. Thus, a hybrid approach offers more promising performance. In this paper, we proposed a Double-Layered Hybrid Approach (DLHA) designed specifically to address the aforementioned problem. We studied common characteristics of different attack categories by creating Principal Component Analysis (PCA) variables that maximize variance from each attack type, and found that R2L and U2R attacks have similar behaviour to normal users. DLHA deploys Naive Bayes classifier as Layer 1 to detect DOS and Probe, and adopts SVM as Layer 2 to distinguish R2L and U2R from normal instances. We compared our work with other published research articles using the NSL-KDD data set. The experimental results suggest that DLHA outperforms several existing state-of-the-art IDS techniques, and is significantly better than any single machine learning classifier by large margins. DLHA also displays an outstanding performance in detecting rare attacks by obtaining a detection rate of 96.67% and 100% from R2L and U2R respectively.
Naive Bayes classifiers (NBC) have dominated the field of taxonomic classification of amplicon sequences for over a decade. Apart from having runtime requirements that allow them to be trained and used on modest laptops, they have persistently provided class-topping classification accuracy. In this work we compare NBC with random forest classifiers, neural network classifiers, and a perfect classifier that can only fail when different species have identical sequences, and find that in some practical scenarios there is little scope for improving on NBC for taxonomic classification of 16S rRNA gene sequences. Further improvements in taxonomy classification are unlikely to come from novel algorithms alone, and will need to leverage other technological innovations, such as ecological frequency information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.