ObjectiveMatrix Gla protein (MGP) is reported to inhibit bone morphogenetic protein (BMP) signal transduction. MGP deficiency is associated with medial calcification of the arterial wall, in a process that involves both osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) and mesenchymal transition of endothelial cells (EndMT). In this study, we investigated the contribution of BMP signal transduction to the medial calcification that develops in MGP-deficient mice. Approach and ResultsMGP-deficient mice (MGP-/-) were treated with one of two BMP signaling inhibitors, LDN-193189 or ALK3-Fc, beginning one day after birth. Aortic calcification was assessed in 28-day-old mice by measuring the uptake of a fluorescent bisphosphonate probe and by staining tissue sections with Alizarin red. Aortic calcification was 80% less in MGP-/- mice treated with LDN-193189 or ALK3-Fc compared with vehicle-treated control animals (P<0.001 for both). LDN-193189-treated MGP-/- mice survived longer than vehicle-treated MGP-/- mice. Levels of phosphorylated Smad1/5 and Id1 mRNA (markers of BMP signaling) did not differ in the aortas from MGP-/- and wild-type mice. Markers of EndMT and osteogenesis were increased in MGP-/- aortas, an effect that was prevented by LDN-193189. Calcification of isolated VSMCs was also inhibited by LDN-193189. ConclusionsInhibition of BMP signaling leads to reduced vascular calcification and improved survival in MGP-/- mice. The EndMT and osteogenic transdifferentiation associated with MGP deficiency is dependent upon BMP signaling. These results suggest that BMP signal transduction has critical roles in the development of vascular calcification in MGP-deficient mice.
Objectives Transfusion of stored red blood cells (RBCs) is associated with increased morbidity and mortality in trauma patients. Plasma hemoglobin scavenges nitric oxide (NO), which can cause vasoconstriction, induce inflammation and activate platelets. We hypothesized that transfusion of RBCs stored for prolonged periods would induce adverse effects (pulmonary vasoconstriction, tissue injury, inflammation, and platelet activation) in lambs subjected to severe hemorrhagic shock, and that concurrent inhalation of NO would prevent these adverse effects. Design Animal study. Setting Research laboratory at the Massachusetts General Hospital, Boston, MA. Subjects Seventeen awake Polypay-breed lambs. Interventions Lambs were subjected to 2 h of hemorrhagic shock by acutely withdrawing 50% of their blood volume. Lambs were resuscitated with autologous RBCs stored for 2 h or less (fresh) or 39±2 (mean±SD) days (stored). Stored RBCs were administered with or without breathing NO (80 ppm) during resuscitation and for 21 h thereafter. Measurements and Main Results We measured hemodynamic and oxygenation parameters, markers of tissue injury and inflammation, plasma hemoglobin concentrations, and platelet activation. Peak pulmonary arterial pressure was higher after resuscitation with stored than with fresh RBCs (24±4 vs. 14±2 mmHg, p<0.001) and correlated with peak plasma hemoglobin concentrations (R2=0.56, p=0.003). At 21 h after resuscitation, pulmonary myeloperoxidase activity was higher in lambs resuscitated with stored than with fresh RBCs (11±2 vs. 4±1 U/g, p=0.007). Furthermore, transfusion of stored RBCs increased plasma markers of tissue injury and sensitized platelets to adenosine diphosphate activation. Breathing NO prevented the pulmonary hypertension, and attenuated the pulmonary myeloperoxidase activity, as well as tissue injury and sensitization of platelets to adenosine diphosphate. Conclusions Our data suggest that resuscitation of lambs from hemorrhagic shock with autologous stored RBCs induces pulmonary hypertension and inflammation, which can be ameliorated by breathing NO.
Cardiovascular disease is the leading cause of morbidity and mortality in the world. Atherosclerotic plaques, consisting of lipid-laden macrophages and calcification, develop in the coronary arteries, aortic valve, aorta, and peripheral conduit arteries and are the hallmark of cardiovascular disease. In humans, imaging with computed tomography allows for the quantification of vascular calcification; the presence of vascular calcification is a strong predictor of future cardiovascular events. Development of novel therapies in cardiovascular disease relies critically on improving our understanding of the underlying molecular mechanisms of atherosclerosis. Advancing our knowledge of atherosclerotic mechanisms relies on murine and cell-based models. Here, a method for imaging aortic calcification and macrophage infiltration using two spectrally distinct near-infrared fluorescent imaging probes is detailed. Near-infrared fluorescent imaging allows for the ex vivo quantification of calcification and macrophage accumulation in the entire aorta and can be used to further our understanding of the mechanistic relationship between inflammation and calcification in atherosclerosis. Additionally, a method for isolating and culturing animal aortic vascular smooth muscle cells and a protocol for inducing calcification in cultured smooth muscle cells from either murine aortas or from human coronary arteries is described. This in vitro method of modeling vascular calcification can be used to identify and characterize the signaling pathways likely important for the development of vascular disease, in the hopes of discovering novel targets for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.