27Given the increasing use of the term "flash drought" by the media and scientific 28 community, it is prudent to develop a consistent definition that can be used to identify 29 these events and to understand their salient characteristics. It is generally accepted that 30 flash droughts occur more often during the summer due to increased evaporative demand; 31 however, two distinct approaches have been used to identify them. The first approach 32focuses on their rate of intensification, whereas the second approach implicitly focuses on 33 their duration. These conflicting notions for what constitutes a flash drought (i.e., 34 unusually fast intensification versus short duration) introduce ambiguity that affects our 35 ability to detect their onset, monitor their development, and understand the mechanisms 36 that control their evolution. Here, we propose that the definition for flash drought should 37 explicitly focus on its rate of intensification rather than its duration, with droughts that 38 develop much more rapidly than normal identified as flash droughts. There are two 39 primary reasons for favoring the intensification approach over the duration approach. 40
Abstract. Satellite-derived soil moisture provides more spatially and temporally extensive data than in situ observations. However, satellites can only measure water in the top few centimeters of the soil. Root zone soil moisture is more important, particularly in vegetated regions. Therefore estimates of root zone soil moisture must be inferred from nearsurface soil moisture retrievals. The accuracy of this inference is contingent on the relationship between soil moisture in the near-surface and the soil moisture at greater depths. This study uses cross correlation analysis to quantify the association between near-surface and root zone soil moisture using in situ data from the United States Great Plains. Our analysis demonstrates that there is generally a strong relationship between near-surface (5-10 cm) and root zone (25-60 cm) soil moisture. An exponential decay filter is used to estimate root zone soil moisture using near-surface soil moisture derived from the Soil Moisture and Ocean Salinity (SMOS) satellite. Root zone soil moisture derived from SMOS surface retrievals is compared to in situ soil moisture observations in the United States Great Plains. The SMOSbased root zone soil moisture had a mean R 2 of 0.57 and a mean Nash-Sutcliffe score of 0.61 based on 33 stations in Oklahoma. In Nebraska, the SMOS-based root zone soil moisture had a mean R 2 of 0.24 and a mean Nash-Sutcliffe score of 0.22 based on 22 stations. Although the performance of the exponential filter method varies over space and time, we conclude that it is a useful approach for estimating root zone soil moisture from SMOS surface retrievals.
Soil moisture observations from seven observational networks (spanning portions of seven states) with different biome and climate conditions were used in this study to evaluate multimodel simulated soil moisture products. The four land surface models, including Noah, Mosaic, Sacramento soil moisture accounting (SAC), and the Variable Infiltration Capacity model (VIC), were run within phase 2 of the North American Land Data Assimilation System (NLDAS-2), with a ⅛° spatial resolution and hourly temporal resolution. Hundreds of sites in Alabama, Colorado, Michigan, Nebraska, Oklahoma, West Texas, and Utah were used to evaluate simulated soil moisture in the 0–10-, 10–40-, and 40–100-cm soil layers. Soil moisture was spatially averaged in each state to reduce noise. In general, the four models captured broad features (e.g., seasonal variation) of soil moisture variations in all three soil layers in seven states, except for the 10–40-cm soil layer in West Texas and the 40–100-cm soil layer in Alabama, where the anomaly correlations are weak. Overall, Mosaic, SAC, and the ensemble mean have the highest simulation skill and VIC has the lowest simulation skill. The results show that Noah and VIC are wetter than the observations while Mosaic and SAC are drier than the observations, mostly likely because of systematic errors in model evapotranspiration.
Soil moisture is an important variable in the climate system that integrates the combined influence of the atmosphere, land surface, and soil. Soil moisture is frequently used for drought monitoring and climate forecasting. However, in situ soil moisture observations are not systematically archived and there are relatively few national soil moisture networks. The lack of observed soil moisture data makes it difficult to characterize long-term soil moisture variability and trends. The North American Soil Moisture Database (NASMD) is a new high-quality observational soil moisture database. It includes over 1,800 monitoring stations in the United States, Canada, and Mexico, making it the largest collections of in situ soil moisture observations in North America. Data are collected from multiple sources, quality controlled, and integrated into an online database (soilmoisture.tamu.edu). Here we describe the development of the database, including quality control/quality assurance, standardization, and collection of metadata. The utility of the NASMD is demonstrated through an analysis of the inter- and intraannual variability of soil moisture from multiple networks. The NASMD is a useful tool for drought monitoring and forecasting, calibrating/validating satellites and land surface models, and documenting how soil moisture influences the climate system on seasonal to interannual time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.