Summary
Innate recognition of invading pathogens in peripheral tissues results in the recruitment of circulating memory CD8+ T cells to sites of localized inflammation during the early phase of a recall response. However, the mechanisms that control the rapid recruitment of these cells to peripheral sites are poorly understood, particularly in relation to influenza and parainfluenza infections of the respiratory tract. In this study, we demonstrate a crucial role for CCR5 in the accelerated recruitment of memory CD8+ T cells to the lung airways during virus challenge. Most importantly, CCR5 deficiency resulted in decreased recruitment of memory T cells expressing key effector molecules and impaired control of virus replication during the initial stages of a secondary response. These data highlight the critical importance of early memory T cell recruitment for the efficacy of cellular immunity in the lung.
Summary
Memory CD8+ T cells in the lung airways provide protection from secondary respiratory virus challenge by limiting early viral replication. Here, we demonstrate that although airway-resident memory CD8+ T cells were poorly cytolytic, memory CD8+ T cells recruited to the airways early during a recall response showed markedly enhanced cytolytic ability. This enhanced lytic activity did not require cognate antigen stimulation, but rather was dependent on STAT1 transcription factor signaling through the interferon-α receptor (Ifnar1), resulting in the antigen-independent expression of granzyme B protein in both murine and human virus-specific T cells. Signaling through Ifnar1 was required for the enhanced lytic activity and control of early viral replication by memory CD8+ T cells in the lung airways. These findings demonstrate that innate inflammatory signals act directly on memory T cells, enabling them to rapidly destroy infected host cells once they enter infected tissues.
Although CD4+ T cells have been shown to mediate protective cellular immunity against respiratory virus infections, the underlying mechanisms are poorly understood. For example, although phenotypically distinct populations of memory CD4+ T cells have been identified in different secondary lymphoid tissues, it is not known which subpopulations mediate protective cellular immunity. In this report, we demonstrate that virus-specific CD4+ T cells persist in the lung tissues and airways for several months after Sendai virus infection of C57BL/6 mice. A large proportion of these cells possess a highly activated phenotype (CD44hi, CD62Llo, CD43hi, and CD25hi) and express immediate effector function as indicated by the production of interferon γ after a 5-h restimulation in vitro. Furthermore, intratracheal adoptive transfer of lung memory cells into β2m-deficient mice demonstrated that lung-resident virus-specific CD4+ T cells mediated a substantial degree of protection against secondary virus infection. Taken together, these data demonstrate that activated memory CD4+ T cells persisting at mucosal sites play a critical role in mediating protective cellular immunity.
Effector memory T cell populations in the periphery play a key role in cellular immune responses to secondary infections. However, it is unclear how these populations are maintained under steady-state conditions in nonlymphoid peripheral sites, such as the lung airways. In this study, we show that LFA-1 expression is selectively down-regulated following entry of memory T cells into the lung airways. Using Sendai virus as a mouse model of respiratory virus infection, we use LFA-1 expression levels to demonstrate that effector memory T cell populations in the lung airways are maintained by continual recruitment of new cells from the circulation. The rate of memory cell recruitment is surprisingly rapid, resulting in replacement of 90% of the population every 10 days, and is maintained for well over 1 year following viral clearance. These data indicate that peripheral T cell memory is dynamic and depends on a systemic source of T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.