It has been hypothesized that the brain categorizes stressors and utilizes neural response pathways that vary in accordance with the assigned category. If this is true, stressors should elicit patterns of neuronal activation within the brain that are category-specific. Data from previous immediate-early gene expression mapping studies have hinted that this is the case, but interstudy differences in methodology render conclusions tenuous. In the present study, immunolabelling for the expression of c-fos was used as a marker of neuronal activity elicited in the rat brain by haemorrhage, immune challenge, noise, restraint and forced swim. All stressors elicited c-fos expression in 25-30% of hypothalamic paraventricular nucleus corticotrophin-releasing-factor cells, suggesting that these stimuli were of comparable strength, at least with regard to their ability to activate the hypothalamic-pituitary-adrenal axis. In the amygdala, haemorrhage and immune challenge both elicited c-fos expression in a large number of neurons in the central nucleus of the amygdala, whereas noise, restraint and forced swim primarily elicited recruitment of cells within the medial nucleus of the amygdala. In the medulla, all stressors recruited similar numbers of noradrenergic (A1 and A2) and adrenergic (C1 and C2) cells. However, haemorrhage and immune challenge elicited c-fos expression in subpopulations of A1 and A2 noradrenergic cells that were significantly more rostral than those recruited by noise, restraint or forced swim. The present data support the suggestion that the brain recognizes at least two major categories of stressor, which we have referred to as 'physical' and 'psychological'. Moreover, the present data suggest that the neural activation footprint that is left in the brain by stressors can be used to determine the category to which they have been assigned by the brain.
Psychological stress contributes to the development of clinical depression. This has prompted many preclinical studies to investigate the neurobiology of this relationship, however, the effects of stress on glia remain unclear. In this study, we wished to determine, first, how exposure to chronic psychological stress affects microglial activity within the prefrontal cortex (PFC) and, second, whether the observed changes were meaningfully related to corresponding changes in local neuronal activity and PFC-regulated behavior. Therefore, we examined markers of microglial activation, antigen presentation, apoptosis, and persistent neuronal activation within the PFC after exposure to repeated restraint stress. We also examined the effect of stress on spatial working memory, a PFC-dependent function. Finally, we tested the ability of a microglial activation inhibitor (minocycline) to alter the impact of chronic stress on all of these endpoints. Stressor exposure produced positively correlated increases in microglial and long-term neuronal activation in the PFC but not antigen presentation or apoptosis. As expected, it also impaired spatial working memory. Importantly, minocycline reduced the impact of stress on neuronal activation and working memory, as well as microglial activation. These results suggest a role for microglia in mediating the effects of stress on PFC neuronal function and PFC-regulated behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.