BackgroundIncreasing understanding of metabolic and regulatory networks underlying microbial physiology has enabled creation of progressively more complex synthetic biological systems for biochemical, biomedical, agricultural, and environmental applications. However, despite best efforts, confounding phenotypes still emerge from unforeseen interplay between biological parts, and the design of robust and modular biological systems remains elusive. Such interactions are difficult to predict when designing synthetic systems and may manifest during experimental testing as inefficiencies that need to be overcome. Despite advances in tools and methodologies for strain engineering, there remains a lack of tools that can systematically identify incompatibilities between the native metabolism of the host and its engineered modifications.ResultsTransforming organisms such as Escherichia coli into microbial factories is achieved via a number of engineering strategies, used individually or in combination, with the goal of maximizing the production of chosen target compounds. One technique relies on suppressing or overexpressing selected genes; another involves on introducing heterologous enzymes into a microbial host. These modifications steer mass flux towards the set of desired metabolites but may create unexpected interactions. In this work, we develop a computational method, termed Metabolic Disruption Workflow (MDFlow), for discovering interactions and network disruption arising from enzyme promiscuity – the ability of enzymes to act on a wide range of molecules that are structurally similar to their native substrates. We apply MDFlow to two experimentally verified cases where strains with essential genes knocked out are rescued by interactions resulting from overexpression of one or more other genes. We then apply MDFlow to predict and evaluate a number of putative promiscuous reactions that can interfere with two heterologous pathways designed for 3-hydroxypropic acid (3-HP) production.ConclusionsUsing MDFlow, we can identify putative enzyme promiscuity and the subsequent formation of unintended and undesirable byproducts that are not only disruptive to the host metabolism but also to the intended end-objective of high biosynthetic productivity and yield. In addition, we show how enzyme promiscuity can potentially be responsible for the adaptability of cells to the disruption of essential pathways in terms of biomass growth.
Increasing understanding of metabolic and regulatory networks underlying microbial physiology has enabled creation of progressively more complex synthetic biological systems for biochemical, biomedical, agricultural, and environmental applications. However, despite best efforts, confounding phenotypes still emerge from unforeseen interplay between biological parts, and the design of robust and modular biological systems remains elusive. Such interactions are difficult to predict when designing synthetic systems and may manifest during experimental testing as inefficiencies that need to be overcome. Transforming organisms such as Escherichia coli into microbial factories is achieved via several engineering strategies, used individually or in combination, with the goal of maximizing the production of chosen target compounds. One technique relies on suppressing or overexpressing selected genes; another involves introducing heterologous enzymes into a microbial host. These modifications steer mass flux towards the set of desired metabolites but may create unexpected interactions. In this work, we develop a computational method, termed M etabolic D isruption Work flow ( MDFlow ), for discovering interactions and network disruptions arising from enzyme promiscuity – the ability of enzymes to act on a wide range of molecules that are structurally similar to their native substrates. We apply MDFlow to two experimentally verified cases where strains with essential genes knocked out are rescued by interactions resulting from overexpression of one or more other genes. We demonstrate how enzyme promiscuity may aid cells in adapting to disruptions of essential metabolic functions. We then apply MDFlow to predict and evaluate a number of putative promiscuous reactions that can interfere with two heterologous pathways designed for 3-hydroxypropionic acid (3-HP) production. Using MDFlow , we can identify putative enzyme promiscuity and the subsequent formation of unintended and undesirable byproducts that are not only disruptive to the host metabolism but also to the intended end-objective of high biosynthetic productivity and yield. As we demonstrate, MDFlow provides an innovative workflow to systematically identify incompatibilities between the native metabolism of the host and its engineered modifications due to enzyme promiscuity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.