Summary
The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ∼24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.
Summary
BG505 SOSIP is a well-characterized near-native recombinant HIV Envelope (Env) trimer that holds promise as part of a sequential HIV immunogen regimen to induce broadly neutralizing antibodies (bnAbs). Rhesus macaques are considered the most appropriate pre-clinical animal model for monitoring antibody (Ab) responses. Accordingly, we report here the isolation of 45 BG505 autologous neutralizing antibodies (nAbs) with multiple specificities from SOSIP-immunized and BG505 SHIV-infected rhesus macaques. We associate the most potent neutralization with two epitopes: the C3/V5 and V1/V3 regions. We show that all of the nAbs bind in close proximity to known bnAb epitopes and might therefore sterically hinder elicitation of bnAbs. We also identify a “public clonotype” that targets the immunodominant C3/V5 nAb epitope, which suggests that common antibody rearrangements might help determine humoral responses to Env immunogens. The results highlight important considerations for vaccine design in anticipation of results of the BG505 SOSIP trimer in clinical trials.
Implanted medical device-associated infections pose significant health risks, as they are often the result of bacterial biofilm formation. Staphylococcus aureus is a leading cause of biofilm-associated infections which persist due to mechanisms of device surface adhesion, biofilm accumulation, and reprogramming of host innate immune responses. We found that the S. aureus fibronectin binding protein A (FnBPA) is required for normal biofilm development in mammalian serum and that the SaeRS two-component system is required for functional FnBPA activity in serum. Furthermore, serum-developed biofilms deficient in FnBPA were more susceptible to macrophage invasion, and in a model of biofilm-associated implant infection, we found that FnBPA is crucial for the establishment of infection. Together, these findings show that S. aureus FnBPA plays an important role in physical biofilm development and represents a potential therapeutic target for the prevention and treatment of device-associated infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.