Layered materials, especially the transition metal dichalcogenides (TMDs), are of interest for a broad range of applications. Among the class of TMDs, molybdenum disulfide (MoS2) is perhaps the most studied because of its natural abundance and use in optoelectronics, energy storage and energy conversion applications. Understanding the fundamental structure-property relations is key for tailoring the enhancement in the above-mentioned applications. Here, we report a controlled powder vaporization synthesis of MoS2 flower-like structures consisting of vertically grown layers of MoS2 exhibiting exposed edges. This growth is readily achievable on multiple substrates, such as graphite, silicon, and silicon dioxide. The resulting MoS2 flowers are highly crystalline and stoichiometric. Further observations using contact angle indicate that MoS2 flowers exhibit the highest reported contact angle of ∼160 ± 10°, making the material super hydrophobic. This surface wettability was further tuned by changing the edge chemistry of the MoS2 flowers using an ozone etching treatment. Hydrogen evolution reaction (HER) measurements indicate that the surface treated with UV-ozone showed a reduction in the Tafel slope from 185 to 54 mV/dec, suggesting an increase in the amount of reactive surface to generate hydrogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.