SUMMARY
Gram-negative bacteria use N-acyl L-homoserine lactone (AHL) quorum sensing (QS) signals to regulate the expression of myriad phenotypes. Non-native AHL analogs can strongly attenuate QS receptor activity and thereby QS signaling; however, we currently lack a molecular understanding of the mechanisms by which most of these compounds elicit their agonistic or antagonistic profiles. In this study, we investigated the origins of striking activity profile switches (i.e., receptor activator to inhibitor, and vice versa) observed upon alteration of the lactone head group in certain AHL analogs. Reporter gene assays of mutant versions of the Pseudomonas aeruginosa QS receptor LasR revealed that interactions between the ligands and Trp60, Tyr56, and Ser129 govern whether these ligands behave as LasR activators or inhibitors. Using this knowledge, we propose a model for the modulation of LasR by AHL analogs—encompassing a subtly different interaction with the binding pocket to a global change in LasR conformation.
Quorum sensing (QS) via the synthesis and detection of N-acyl L-homoserine lactone (AHL) signals regulates important pathogenic and mutualistic phenotypes in many bacteria. Over the past two decades, the development of non-native molecules that modulate this cell-cell signaling process has become an active area of research. The majority of these compounds were designed for block binding of the native AHL signal to its cognate LuxR-type receptor, and much effort has focused on LasR in the opportunistic pathogen Pseudomonas aeruginosa. Despite a small set of reported LasR structural data, it remains unclear which polar interactions are most important for either (i) activation of the LasR receptor by its native AHL signal, N-(3-oxo)-dodecanoyl L-homoserine lactone (OdDHL), or (ii) activation or inhibition of LasR by related AHL analogs. Herein, we report our investigations into the activity of OdDHL and five synthetic analogs in wild-type LasR and in nine LasR mutants with modifications to key polar residues in their ligand binding sites. Our results allowed us to rank, for the first time, the relative importance of each LasR:OdDHL hydrogen bond for LasR activation and provide strong evidence for the five synthetic ligands binding LasR in a very similar orientation as OdDHL. By delineating the specific molecular interactions that are important for LasR modulation by AHLs, these findings should aid in the design of new synthetic modulators of LasR (and homologous LuxR-type receptors) with improved potencies and selectivities.
Lay Summary
Herein, we evaluated the humoral immunogenicity of a third coronavirus disease 2019 messenger RNA vaccine dose in patients with inflammatory bowel diseases. All patients displayed a humoral immune response, and median antibody concentrations were higher after the third dose than after completion of the 2-dose series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.