Dielectric electroactive polymers are materials capable of mechanically adjusting their volume in response to an electrical stimulus. However, currently these materials require multi-step manufacturing processes which are not additive. This paper presents a novel 3D printed flexible dielectric material and characterizes its use as a dielectric electroactive polymer (DEAP) actuator. The 3D printed material was characterized electrically and mechanically and its functionality as a dielectric electroactive polymer actuator was demonstrated. The flexible 3-D printed material demonstrated a high dielectric constant and ideal stress-strain performance in tensile testing making the 3-D printed material ideal for use as a DEAP actuator. The tensile stress-strain properties were measured on samples printed under three different conditions (three printing angles 0°, 45° and 90°). The results demonstrated the flexible material presents different responses depending on the printing angle. Based on these results, it was possible to determine that the active structure needs low pre-strain to perform a visible contractive displacement when voltage is applied to the electrodes. The actuator produced an area expansion of 5.48% in response to a 4.3 kV applied voltage, with an initial pre-strain of 63.21% applied to the dielectric material.
Electroactive polymers are a class of materials capable of reallocating their shape in response to an electric field while also having the ability to harvest electrical energy when the materials are mechanically deformed. Electroactive polymers can therefore be used as sensors, actuators, and energy harvesters. The parameters for manufacturing flexible electroactive polymers are complex and rate limiting due to number of steps, their necessity, and time intensity of each step. Successful 3D printing manufacturing processes for electroactive polymers will allow for scalability and flexibility beyond current limitations, improving the field, opening additional manufacturing possibilities, and increasing output. The goal for this research is to use additive manufacturing techniques to print conductive and dielectric substrates for building flexible circuits and sensors. Printing flexible conductive layers and substrates together allows for added creativity in design and application. In this work we have successfully demonstrated additive production of a simple flexible circuit using exclusively additive manufacturing.
3D printing technologies have advanced significantly in recent years allowing for additive manufacturing of new structured materials, expanding the range, function, and capabilities of manufactured components. In this work, flexible capacitors were produced using additive manufacturing and compared to commercially available capacitance sensors in strain testing. The sensors utilize thermoplastic polyurethane (TPU) printed using fused filament fabrication methods as a dielectric substrate and a combination of flexible inks for production of the conductive surface. Flexible inks were printed using syringe based deposition methods on a custom designed printer using the TPU substrate. Results demonstrated successful capacitor production with capacitance values ranging from 2–70 pF depending on geometry, material, and printing conditions. The 3D printed flexible capacitors were characterized over a frequency range of 100 Hz to 10 kHz and compared to commercial roll-to-roll produced capacitors. Strain testing was conducted from 0–50% strain using a mechanical testing machine for the range of sensors and final capacitance post strain was measured to calculate deviation from original capacitance values. The sensors exhibited a relatively linear increase in capacitance when strained and returned to a resting position upon release of strain with minimal hysteresis effects, demonstrating their utility as 3D printed sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.