Equilibrium partition coefficients of organic chemicals from water to an organism or its tissues are typically estimated by using the total lipid content in combination with the octanol-water partition coefficient (K(ow)). This estimation method can cause systematic errors if (1) different lipid types have different sorptive capacities, (2) nonlipid components such as proteins have a significant contribution, and/or (3) K(ow) is not a suitable descriptor. As an alternative, this study proposes a more general model that uses detailed organism and tissue compositions (i.e., contents of storage lipid, membrane lipid, albumin, other proteins, and water) and polyparameter linear free energy relationships (PP-LFERs). The values calculated by the established PP-LFER-composition-based model agree well with experimental in vitro partition coefficients and in vivo steady-state concentration ratios from the literature with a root mean squared error of 0.32-0.53 log units, without any additional fitting. This model estimates a high contribution of the protein fraction to the overall tissue sorptive capacity in lean tissues (e.g., muscle), in particular for H-bond donor polar compounds. Direct model comparison revealed that the simple lipid-octanol model still calculates many tissue-water partition coefficients within 1 log unit of those calculated by the PP-LFER-composition-based model. Thus, the lipid-octanol model can be used as an order-of-magnitude approximation, for example, for multimedia fate modeling, but may not be suitable for more accurate predictions. Storage lipid-rich phases (e.g., adipose, milk) are prone to particularly large systematic errors. The new model provides useful implications for validity of lipid-normalization of concentrations in organisms, interpretation of biomonitoring results, and assessment of toxicity.
A large and ever-increasing number of chemicals are used in commerce, and researchers and regulators have struggled to ascertain that these chemicals do not threaten human health or cause environmental or ecological damage. The presence of persistent organic pollutants (POPs) in remote environments such as the Arctic is of special concern and has international regulatory implications. Responding to the need for a way to identify chemicals of high concern, a methodology has been developed which compares experimentally measured properties, or values predicted from chemical structure alone, to a set of screening criteria. These criteria include partitioning properties that allow for accumulation in the physical Arctic environment and in the Arctic human food chain, and resistance to atmospheric oxidation. Atthe same time we quantify the extent of structural resemblance to a group of known Arctic contaminants. Comparison of the substances that are identified by a mechanistic description of the processes that lead to Arctic contamination with those substances that are structurally similar to known Arctic contaminants reveals the strengths and limitations of either approach. Within a data set of more than 100,000 distinct industrial chemicals, the methodology identifies 120 high production volume chemicals which are structurally similarto known Arctic contaminants and/or have partitioning properties that suggest they are potential Arctic contaminants.
The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log D < 4.5 between pH 4-10 (where D is the organic carbon-water distribution coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest PMOC ranking (half-life > 40 days, log D < 1.0 between pH 4-10). Only 9% of neutral substances received the highest PMOC ranking, compared to 30% of ionizable compounds and 44% of ionic compounds. Predicted hydrolysis products for all REACH parents (contributing 5043 additional structures) were found to have higher PMOC rankings than their parents, due to increased mobility but not persistence. The fewest experimental data available were for ionic compounds; therefore, their ranking is more uncertain than neutral and ionizable compounds. The most sensitive parameter for the PMOC ranking was freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.
Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources.Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments.Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified.Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients.Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.