The underlying domain structures of ferroelastic ceramics have a large influence on their macroscopic electromechanical properties. The profile shape functions of certain pseudo-cubic peaks in diffraction patterns collected from these materials can provide a great deal of information about such domain structures. Using both constant-wavelength neutron and high-energy synchrotron x-ray diffraction, profile shape functions of the pseudo-cubic 002 reflection are evaluated in a soft, tetragonal PZT ceramic. Errors in the integrated intensity ratio, important for measuring the degree of domain boundary movement in these materials, are subject to further scrutiny. It is shown that an asymmetric Pearson VII type distribution, integrated numerically between reasonable limits, gives the most accurate value of relative domain populations in these materials. It is also shown that the diffuse scattering caused by ferroelastic domain walls may be used to estimate the amount of material that is affected by microstrains originating at these walls.
The components of the elastic constant matrix of monoclinic caesium dihydrogen phosphate (CDP) have been determined using ultrasonic velocity measurements to be Cl1 = 28· 83 ± 0 '43, C22 = 26·67 ± O· 37, C33 = 65 ·45 ± 0'48, C44 = 8 .1O± 0,15, Css = 5 ·20± 0,24, C66 = 9·17 ± 0,22, C12 = 1l'4±3'6, C13 = 42·87±1·58, CIS = 5'13±0'67, C23 = 14·5±4·4, C 2S = 8'4±4'3, C3S = 7·50±0·81 and C46 = -2·25±0·31 GPa. Calculations of the velocity surfaces, ray directions, Young's modulus surfaces and linear compressibility show marked elastic anisotropy, which has been correlated with the chain and layer-like structure of CDP.
The polarization reversal mechanism in [111]c-oriented Pb(Zn1∕3Nb2∕3)O3−xPbTiO3 has been investigated by in-situ neutron diffraction. Stepwise static-field measurements of the (222)c rocking curves confirm a two-stage polarization reversal mechanism via a sequence of non-180° domain reorientations. The time-resolved response has also been measured upon application of a bipolar square wave with a 30 s period to observe directly the relaxation times of diffracted neutron intensity during the reversal process. Upon application of a large antipolar field, the diffraction intensity increases quickly, before relaxing over a longer time period with an exponential decay constant, τ, of approximately 5.7 s. These large time constants correlate with a frequency dependence of the macroscopic strain-field response.
The dynamic electric-field-induced strain in piezoelectric ceramics enables their use in a broad range of sensor, actuator, and electronic devices. In piezoelectric ceramics which are also ferroelectric, this macroscopic strain is comprised of both intrinsic (piezoelectric) and extrinsic (non-180° domain switching) strain components. Extrinsic contributions are accompanied by hysteresis, nonlinearity, and fatigue. Though technologically significant, direct measurement of these mechanisms and their relative contributions to the macroscopic response has not yet been achieved at driving frequencies of interest. Here we report measurements of these mechanisms in ceramic lead zirconate titanate during application of subcoercive cyclic driving electric fields using an in-situ stroboscopic neutron diffraction technique. Calculations are made from the diffraction measurements to determine the relative contributions of these different strain mechanisms. During applied electric field square waves of +0.5Ec unipolar and ±0.5Ec bipolar, at 1 Hz, non-180° domain switching is found to contribute 34% and 40% of the macroscopically measured strain, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.