a b s t r a c tO-glycosylation is a ubiquitous eukaryotic post-translational modification, whereas early reports of S-linked glycopeptides have never been verified. Prokaryotes also glycosylate proteins, but there are no confirmed examples of sidechain glycosylation in ribosomal antimicrobial polypeptides collectively known as bacteriocins. Here we show that glycocin F, a bacteriocin secreted by Lactobacillus plantarum KW30, is modified by an N-acetylglucosamine b-O-linked to Ser18, and an N-acetylhexosamine S-linked to C-terminal Cys43. The O-linked N-acetylglucosamine is essential for bacteriostatic activity, and the C-terminus is required for full potency (IC 50 2 nM). Genomic context analysis identified diverse putative glycopeptide bacteriocins in Firmicutes. One of these, the reputed lantibiotic sublancin, was shown to contain a hexose S-linked to Cys22.
The oligomerization of β-lactoglobulin (βLg) has been studied extensively, but with somewhat contradictory results. Using analytical ultracentrifugation in both sedimentation equilibrium and sedimentation velocity modes, we studied the oligomerization of βLg variants A and B over a pH range of 2.5-7.5 in 100 mM NaCl at 25°C. For the first time, to our knowledge, we were able to estimate rate constants (k(off)) for βLg dimer dissociation. At pH 2.5 k(off) is low (0.008 and 0.009 s(-1)), but at higher pH (6.5 and 7.5) k(off) is considerably greater (>0.1 s(-1)). We analyzed the sedimentation velocity data using the van Holde-Weischet method, and the results were consistent with a monomer-dimer reversible self-association at pH 2.5, 3.5, 6.5, and 7.5. Dimer dissociation constants K(D)(2-1) fell close to or within the protein concentration range of ∼5 to ∼45 μM, and at ∼45 μM the dimer predominated. No species larger than the dimer could be detected. The K(D)(2-1) increased as |pH-pI| increased, indicating that the hydrophobic effect is the major factor stabilizing the dimer, and suggesting that, especially at low pH, electrostatic repulsion destabilizes the dimer. Therefore, through Poisson-Boltzmann calculations, we determined the electrostatic dimerization energy and the ionic charge distribution as a function of ionic strength at pH above (pH 7.5) and below (pH 2.5) the isoelectric point (pI∼5.3). We propose a mechanism for dimer stabilization whereby the added ionic species screen and neutralize charges in the vicinity of the dimer interface. The electrostatic forces of the ion cloud surrounding βLg play a key role in the thermodynamics and kinetics of dimer association/dissociation.
Bovine β-lactoglobulin (β-Lg) self-assembles into long amyloid-like fibrils when heated at 80 °C, pH 2, and low ionic strength (<0.015 mM). Heating β-Lg under fibril-forming conditions shows a lag phase before fibrils start forming. We have investigated the structural characteristics of β-Lg during the lag phase and the composition of β-Lg fibrils after their separation using ultracentrifugation. During the lag phase, the circular dichroism spectra of heated β-Lg showed rapid unfolding, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of samples showed increasing hydrolysis of β-Lg. The SDS-PAGE profiles of fibrils separated by ultra centrifugation showed that after six hours, the fibrils consisted of a few preferentially accumulated peptides. Two-dimensional SDS-PAGE under reducing and nonreducing conditions showed the presence of disulfide-bonded fragments in the fibrils. The sequences in these peptide bands were characterized by in-gel digestion electrospray ionization (ESI)-MS/MS. The composition of solubilized fibrils was also characterized by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS/MS. Both MS analyses showed that peptides in fibrils were primarily from the N-terminal region, although there was some evidence of peptides from the C-terminal part of the molecule present in the higher molecular weight gel bands. We suggest that although the N-terminal region of β-Lg is almost certainly involved in the formation of the fibrils, other peptide fragments linked through disulfide bonds may also be present in the fibrils during self-assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.