Kagome graphene is a carbon allotrope similar to graphene, with a single-atom thickness and a co-planar atomic structure. Despite interesting electronic properties, its mechanical behavior is still elusive. We have investigated the tensile properties of Kagome graphene under various strain rates and finite temperatures using molecular dynamics simulations. The Young’s modulus, ultimate tensile strength, fracture strain, and fracture toughness of the unsupported bulk material were measured as 96 GPa, 43 GPa, 0.05, and 1.9 J m−3, respectively, at room temperature and a strain rate of 109 s−1. Two deformation-stages were observed under tensile loading: normal and wrinkled. Initially, the Kagome graphene system stays in a co-planar structure without wrinkling until the tensile strain reaches 0.04, where it starts to wrinkle, unlike graphene. The wrinkle wavelength and magnitude suggest a very low bending rigidity, and wrinkle formation does not follow a rate predicted by continuum mechanics. Furthermore, the fracture mechanism of wrinkled Kagome graphene is briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.