In this paper, the method to analyze of vortex dynamics simulation of 3-D (three dimensional) backward wind turbine blades is introduced, consisted of flow visualization part and detailed measurement part. With this method, one could explain visually and by calculation the role of 3-D flow vortex mechanism patterns on 3-D backward wind turbine blade, the interchange between kinetic and potential energies, the utilization of very strong vortex, which could lose energy, generate lift, and produce tangential mechanical power. The method could be elucidated by analyzing the appearance of rolled-up vortex effect on the 3-D backward wind turbine blades. A sharp pointed backward blade, generally has a weak tip vortex, may generate a second weak vortex center, and appears due to the rolled-up vortex effect, which is quite difficult to identify. The weakness of tip vortex makes the sharp pointed blade more efficient to exchange energy. Blunt backward turbine blades generally have a strong vortex center, a tip vortex; which in the form of a vortex core. Due to the rolled-up vortex effect, it could generate a second weak vortex center that is clearly visible.
Fighter aircrafts with high maneuverability and swiftness are due to fuselage effects, caused by canard-fuselage-main wing configuration. Even though the flows around fighters are highly complex, mostly they create rolled-up vortices capable to delay stalls and increase maximum lifts (Calderon, Wang & Gursul, 2012;Mitchell & Delery, 2001;Boelens, 2012;Chen, Liu, Guo & Qu, 2015). The vortex dynamics analysis method employment is introduced, in this case we focus only on the fighter canard. It characterizes the vortex core, develops the pitching moment & main wing total lift, and exploits the vortex centre visualization, the strength, negative surface pressure and its trajectory. This paper explains the influence of the fighter fuselage, it generates rolled-up vortex effects, causes the flow deflected by the fighter fuselage head, strengthen the vortex centre to become vortex core. Above the aircraft head, due to the curved contour head effect, the second vortex centers are developed makes the vortex center above the head more dynamic.Comparing with fighter without fuselage, the flow property changes, for Chengdu J-10-like model with fuselage, are concentrated at the canard leading edge, where the negative pressures are stronger, since the maximum axial velocities of the vortex centre are higher, and give more distinctive vortex breakdown locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.