A major problem in an exoskeleton based on electromyography (EMG) control with pattern recognition-based is the need for more time to train and to calibrate the system in order able to adapt for different subjects and variable. Unfortunately, the implementation of the joint prediction on an embedded system for the exoskeleton based on the EMG control with non-pattern recognition-based is very rare. Therefore, this study presents an implementation of elbow-joint angle prediction on an embedded system to control an upper limb exoskeleton based on the EMG signal. The architecture of the system consisted of a bio-amplifier, an embedded ARMSTM32F429 microcontroller, and an exoskeleton unit driven by a servo motor. The elbow joint angle was predicted based on the EMG signal that is generated from biceps. The predicted angle was obtained by extracting the EMG signal using a zero-crossing feature and filtering the EMG feature using a Butterworth low pass filter. This study found that the range of root mean square error and correlation coefficients are 8°-16° and 0.94-0.99, respectively which suggest that the predicted angle is close to the desired angle and there is a high relationship between the predicted angle and the desired angle.
<p class="0abstract">Quadriplegia is a paralysis condition in both arms and legs so that the patient is only able to move his neck and head. Manual or electric wheelchairs with joystick or switch control as a tool for people with paralysis certainly cannot be controlled independently by quadriplegia sufferers. This study aimed to help quadriplegia sufferers not to depend on others in carrying out daily activities by developing electric wheelchairs that can be controlled independently. The bioelectric signal which has only been used for diagnostic purposes can be utilized as an electric wheelchair control system for quadriplegia sufferers. In this study, electric wheelchairs were controlled by electromyography (EMG) signals from muscle contractions that can be driven by quadriplegia sufferers, namely the neck and face muscles. The increase in EMG signal amplitude during the muscle contraction is used as a trigger for the electric motor in a wheelchair to move forward, backward, turn right, and turn left. An electronic circuit for signal conditioning was used to amplify the EMG signal leads and filter frequencies that are not needed by the system before being processed by the microcontroller circuit. The use of wireless systems was developed to reduce the use of cables connecting electrodes to patients with electronic devices that will provide comfort to the user. Based on the results of the data collection on the wheelchair system, the detectability and selectivity values were for the 100% and 94% forward commands, 94.33% and 100% reverse commands, 92.31%, and 96% right turn commands and 97.96% and 94.12% left turn commands. The electric wheelchair system with EMG signal control is expected to help the mobility of quadriplegia sufferers.</p>
Electrosurgery Unit is a medical device that utilizes high frequency and voltage used to cut and dry tissue during the surgical process. The purpose of making this tool is to damage certain body tissues by heating the tissue. Heat is obtained by concentrating high frequency electricity on certain body tissues using active and passive electrodes as a medium. The Electrosurgery Unit involves the use of the CMOS 4069 IC as a frequency generator. The output frequency is set at 300 KHz then forwarded to the pulse regulating circuit and controlled with ic atmega328 then forwarded to the inverter circuit which functions to increase the voltage and output in the form of power. The module is calibrated using ESU Analyzer. This module is equipped with LOW, MEDIUM, HIGH. After the measurements are made, the more load is given higher to the tool, the higher the power released by the tool in each power selection. Then the load relationship and the power released are directly proportional. This ESU was made so that during the surgical process the body's tissue does not experience a lot of blood loss. Besides being able to use it for surgery, it can also be used to close the tissue after surgery.
Vital signs are an important component of monitoring the adult or child patient's progress during hospitalization, as they allow for the prompt detection of delayed recovery or adverse events. Vital signs are measured to obtain basic indicators of a patient's health status. The most common intervention performed in hospital medicine is a measurement of vital signs, and these traditionally consist of blood pressure, temperature, pulse rate, and respiratory rate. Advanced monitoring systems incorporate a balanced combination of clinical and technological aspects to give an innovative healthcare outcome. Remote patient monitoring systems are rapidly becoming the core of healthcare deliveries. The paradigm shifted from traditional and manual recording to computer-based electronic records and further to smartphones as versatile and innovative healthcare monitoring systems. This research aims to design a Vital Sign Monitoring device for BPM and SpO2 Parameters with Notifications through the IoT-Based Telegram application. This device can monitor vital signs, especially BPM and SPO2, wherever the patient is and whenever so that doctors or health workers and patients can find out their health condition. This display can be viewed via web thinger.io, then forwarded to telegram if an abnormal patient condition is found, and there is an indicator light that will light up differently for each condition. This study uses the MAX30100, which is a digital sensor to detect oxygen saturation and heart rate. The results of this study have succeeded in displaying data on the IoT web and sending notifications to the Telegram application. And also, the resulting data has an error that does not exceed the allowable limit according to each parameter. The difference between heart rate readings and oxygen saturation values on the device and patient monitor is 0.015% for heart rate and 0.01% for oxygen saturation. This study indicates that it is time to monitor vital signs that can be seen remotely and have a system that is an inexpensive and easy-to-operate device for health workers without interfering with activities of daily living.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.