Heart disease is one of the most dangerous diseases that threaten human life. The doctor uses echocardiography to analyze heart disease. The result of echocardiography test is a video that shows the movement of the heart rate. The result of echocardiography test indicates whether the patient's heart is normal or not by identifying a heart cavity area. Commonly it is determined by a doctor based on his own accuracy and experience. Therefore, many methods to do heart segmentation is appearing. But, the methods are a bit slow and less precise. Thus, a system that can help the doctor to analyze it better is needed. This research will develop a system that can analyze the heart rate-motion and automatically measure heart cavity area better than the existing method. This paper proposes an improved system for cardiac segmentation using median high boost filter to increase image quality, followed by the use of an active shape model and optical flow. The segmentation of the heart rate-motion and auto measurement of the heart cavity area is expected to help the doctor to analyze the condition of the patient with better accuracy. Experimental result validated our approach.
Abstract-A model of artificial neural networks (ANNs) is presented in this paper to predict aftershock during the next five days after an earthquake occurrence in selected cluster of Indonesia with magnitude equal or larger than given threshold. The data were obtained from Indonesian Agency for Meteorological, Climatological and Geophysics (BMKG) and United States Geological Survey's (USGS). Six cluster was an optimal number of cluster base-on cluster analysis implementing Valley Tracing and Hill Climbing algorithm, while Hierarchical K-means was applied for datasets clustering. A quality evaluation was then conducted to measure the proposed model performance for two different thresholds. The experimental result shows that the model gave better performance for predicting an aftershock occurrence that equal or larger than 6 Richter's scale magnitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.