The increasing needs for more disaggregated data motivates National Statistical Offices (NSOs) to develop efficient methods for producing official statistics without compromising on quality. In Indonesia, regional autonomy requires that Sustainable Development Goals (SDGs) indicators are available up to the district level. However, several surveys such as the Indonesian Demographic and Health Survey produce estimates up to the provincial level only. This generates gaps in support for district level policies. Small area estimation (SAE) techniques are often considered as alternatives for overcoming this issue. SAE enables more reliable estimation of the small areas by utilizing auxiliary information from other sources. However, the standard SAE approach has limitations in estimating non-sampled areas. This paper introduces an approach to estimating the non-sampled area random effect by utilizing cluster information. This model is demonstrated via the estimation of contraception prevalence rates at district levels in North Sumatera province. The results showed that small area estimates considering cluster information (SAE-cluster) produce more precise estimates than the direct method. The SAE-cluster approach revises the direct estimates upward or downward. This approach has important implications for improving the quality of disaggregated SDGs indicators without increasing cost. The paper was prepared under the kind mentorship of Professor James J. Cochran, Associate Dean for Research, Prof. of Statistics and Operations Research, University of Alabama.
Working children may create problem since it relates to human right as well as to the development of children especially in getting sufficient education. This paper discusses determinant factors of working children by using conditional logistics regression for matched pairs data. Matching is employed to adjust confounding factors and to avoid bias. In this paper there are three confounding factors that have been considered, i.e. residential area, gender, and income of household head. The results showed that the conditional regression model outperformed the standard regression model. The number of household members, whether the head of household was married or single, age of the head of household, educational attainment of the head of household, as well as the work status of the head of household were the determinant factors of the working children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.