60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. DOCUMENT AVAILABILITYOnline Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/), a service of the US Dept. of Energy's Office of Scientific and Technical Information.
In pursuit of scientific discovery, vast collections of unstructured structural and functional images are acquired; however, only an infinitesimally small fraction of this data is rigorously analyzed, with an even smaller fraction ever being published. One method to accelerate scientific discovery is to extract more insight from costly scientific experiments already conducted. Unfortunately, data from scientific experiments tend only to be accessible by the originator who knows the experiments and directives. Moreover, there are no robust methods to search unstructured databases of images to deduce correlations and insight. Here, we develop a machine learning approach to create image similarity projections to search unstructured image databases. To improve these projections, we develop and train a model to include symmetry-aware features. As an exemplar, we use a set of 25,133 piezoresponse force microscopy images collected on diverse materials systems over five years. We demonstrate how this tool can be used for interactive recursive image searching and exploration, highlighting structural similarities at various length scales. This tool justifies continued investment in federated scientific databases with standardized metadata schemas where the combination of filtering and recursive interactive searching can uncover synthesis-structure-property relations. We provide a customizable open-source package (https://github.com/m3-learning/Recursive_Symmetry_Aware_Materials_Microstructure_Explorer) of this interactive tool for researchers to use with their data.
Titanium zirconium molybdenum (TZM) is a high strength at high temperature alloy with favorable properties for use in high temperature structural applications. Use of TZM in high pressure, gas-containing autoclave systems was recently demonstrated for the ammonothermal method. Use of indium (In) in the system is desired, though there is a general lack of literature and understanding on the corrosion and impact of In on the mechanical properties of TZM. This study reports for the first time the mechanical properties of TZM after exposure to metallic In at temperatures up to 1000 °C. Static corrosion testing of TZM in In were performed at 750 °C and 1000 °C for 14 days. A microstructure analysis was performed suggesting no visible alteration of the grain structure. Differential thermal analysis (DTA) was performed to investigate compound formation between In and the primary constituents of TZM yielding no measurable reactions and hence no noticeable compound formation. X-ray energy dispersive spectroscopy (EDS) line scans across the TZM-In interface revealed no measurable mass transport of In into the TZM matrix. These results were confirmed using X-ray diffraction (XRD). Given the apparent inertness of TZM to In, mechanical properties of TZM after exposure to In were measured at test temperatures ranging from 22 °C to 800 °C and compared to unexposed, reference TZM samples from the same material stock. Tensile properties, including ultimate tensile strength, yield strength and total elongation, were found to be comparable between In-exposed and unexposed TZM samples. Impact fracture toughness testing (Charpy) performed at temperatures ranging from −196 °C to 800 °C showed that TZM is unaffected upon exposure to In. Tensile testing indicated ductile behavior at room temperature (slow strain rate) whereas impact testing (high strain rate) suggested a ductile to brittle transition temperature between 100 °C and 400 °C. Given these results, TZM appears to be a promising candidate for use as a force bearing material when exposed to In at high temperature.
Single-phase natural circulation thermosiphon loops have been attracting increased interest as they represent the prototype of passive safety systems. However, the stability properties of thermosiphon loops, which can affect and compromise their functionality, are still actively investigated. Traditionally, the stability analysis of thermosiphon loops has been simplified to one-dimensional (1D) calculations, on the argument that the flow would be mono-dimensional when the diameter of the pipe D is orders of magnitude smaller than the length of the loop Lt. However, at lower Lt /D ratios, rectangular thermosiphon loops show that the flow presents 3D effect, which also has been confirmed by stability analyses in toroidal loops. In this paper, we performed a series of high-fidelity simulations using the spectral element code Nek5000 to investigate the stability behavior of the flow in rectangular thermosiphon loops. A wide range of Lt/D ratio from 10 to 200 has been considered and the results show many different outcomes compared to previous 1D analytical calculations or stability theory. Moreover, we analyzed the flow in rectangular thermosiphon loops using Proper Orthogonal Decomposition (POD) and we observed that the cases without flow reversal are characterized by swirl modes typical of bent pipes and high-frequency oscillation of the related time coefficients obtained by Galerkin projection. However, the swirl mode was not observed in cases with flow reversals, these cases are characterized by symmetric flow field at 2nd POD mode and the similarity of low-frequency oscillation in the projection of POD modes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.