Background: We aimed to evaluate whether the severity of obstructive sleep apnea syndrome (OSAS) per se affects the prevalence of left ventricular (LV) diastolic dysfunction in patients without comorbidities. Methods: A total of 42 patients with first-diagnosed severe OSAS [apnea–hypopnea index (AHI) > 30] and 25 controls (AHI < 5), having been referred for snoring to the Sleep Laboratory Department of our tertiary Hospital, were enrolled in the study. Inclusion criteria were absence of any cardiovascular or oxidative stress-related comorbidities, and age between 20 and 70 years. Clinical, laboratory, echocardiographic, and polysomnographic data were recorded prospectively. Diastolic dysfunction diagnosis and grading was based on 2016 ASE/EACVI recommendations. Results: Severe OSAS was associated with significantly increased prevalence and degree of diastolic dysfunction (26/42; 61.9%) compared with controls (7/25; 28%) ( p = 0.007). AHI ⩾ 55 (dichotomous value of severe OSAS subset) was also characterized by greater prevalence and degree of diastolic dysfunction compared with 30 < AHI < 55 patients ( p = 0.015). In the severe OSAS subset, age >45 years-old, height <1.745 m, body-mass index (BMI) >27.76 kg m−2, OSAS severity (AHI > 57.35), oxidative stress (overnight reduction of reduced to oxidized glutathione ratio < 18.44%), and BMI/height ratio > 16.155 kg m−3 (an index describing ‘dense’, short-heavy patients) presented significant diagnostic utility in identifying diastolic dysfunction in ROC-curve analysis (0.697 ⩾ AUC ⩾ 0.855, 0.001 ⩽ p ⩽ 0.018). In binary logistic regression model, advanced age (OR 1.23, 95% CI 1.025–1.477; p = 0.026) and AHI (OR 1.123, 95% CI 1.007–1.253; p = 0.036) showed independent association with diastolic dysfunction in severe OSAS. Conclusions: The present prospective study may suggest that severe OSAS is significantly associated with LV diastolic dysfunction; OSAS clinical severity exerts a positive influence on (and possibly constitutes an independent risk factor of) LV diastolic dysfunction. The reviews of this paper are available via the supplementary material section.
Background In the recent era, antimicrobial resistance has been identified as one of the most important threats to human health worldwide. The rapid emergence of antibiotic-resistant pathogens (ABRP) in the modern intensive care unit (ICU) also represents a “nightmare scenario” with unknown clinical consequences. In the Greek ICU, in particular, gram negative ABRPs are now considered endemic. However, the possible longitudinal impact of ABRPs on long-term outcomes of ICU patients has not yet been determined. Methods In this two-year (January 2014-December 2015) single-centre observational longitudinal study, 351 non-neurocritical ICU patients ≥ 18 year-old were enrolled. Patients’ demographic, clinical and outcome data were prospectively collected. Quality-adjusted life years (QALY) were calculated at 6, 12, 18 and 24 months after ICU admission. Results Fifty-eight patients developed infections due to ABRP (ABRP group), 57 due to non-ABRP (non-ABRP group), and 236 demonstrated no infection (no-infection group) while in ICU. Multiple regression analysis revealed that multiple organ dysfunction syndrome score (OR: 0.676, 95%CI 0.584–0.782; P < 0.001) and continuous renal replacement therapy (OR: 4.453, 95%CI 1.805–10.982; P = 0.001) were the only independent determinants for ABRP infections in ICU. Intra-ICU, 90-day and 2-year mortality was 27.9%, 52.4% and 61.5%, respectively. Compared to the non-ABRP and no-infection group, the ABRP group demonstrated increased intra-ICU, 90-day and 2-year mortality (P ≤ 0.022), worse 2-year survival rates in ICU patients overall and ICU survivor subset (Log-rank test, P ≤ 0.046), and poorer progress over time in 2-year QALY kinetics in ICU population overall, ICU survivor and 2-year survivor subgroups (P ≤ 0.013). ABRP group was further divided into multi-drug and extensively-drug resistant subgroups [MDR (n = 34) / XDR (n = 24), respectively]. Compared to MDR subgroup, the XDR subgroup demonstrated increased ICU, 90-day and 2-year mortality (P ≤ 0.031), but similar 90-day and 2-year QALYs (P ≥ 0.549). ABRP infections overall (HR = 1.778, 95% CI 1.166–2.711; P = 0.008), as well as XDR [HR = 1.889, 95% CI 1.075–3.320; P = 0.027) but not MDR pathogens, were independently associated with 2-year mortality, after adjusting for several covariates of critical illness. Conclusions The present study may suggest a significant association between ABRP (especially XDR) infections in ICU and increased mortality and inability rates for a prolonged period post-discharge that requires further attention in larger-scale studies.
Superior vena cava (SVC) cancerous thrombosis is extremely sparse, especially in the setting of extrathoracic tumours. Herein, we present the case of a patient with a squamous cell carcinoma of the tongue, who presented with SVC syndrome possibly secondary to symptomatic metastatic pericardial effusion. In this unique patient, the disastrous concurrence of all the elements of Virchow's triad within the confined anatomical space of SVC may have precipitated extensive vessel thrombosis with catastrophic consequences. To our knowledge, there has been no previous report about presence of SVC cancerous thrombosis in squamous cell tongue cancer. In this respect, our report may provide an unusual mechanism of tongue cancer expansion, which clinicians should be familiar with. In addition, it may highlight the clinical importance of SVC thrombosis on patients' clinical outcome, as well as the role of transoesophageal echocardiography in early detection of occult thrombi in the sub-set of patients with SVC syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.