Since the seminal paper by Cook and Weisberg (1982), local influence, next to case deletion, has gained popularity as a tool to detect influential subjects and measurements for a variety of statistical models. For the linear mixed model the approach leads to easily interpretable and computationally convenient expressions, not only highlighting influential subjects, but also which aspect of their profile leads to undue influence on the model's fit (Verbeke and Lesaffre 1998). Ouwens, Tan, and Berger (2001) applied the method to the Poisson-normal generalized linear mixed model (GLMM). Given the model's non-linear structure, these authors did not derive interpretable components but rather focused on a graphical depiction of influence. In this paper, we consider GLMMs for binary, count, and time-to-event data, with the additional feature of accommodating overdispersion whenever necessary. For each situation, three approaches are considered, based on: (1) purely numerical derivations; (2) using a closed-form expression of the marginal likelihood function; and (3) using an integral representation of this likelihood. The methodology is illustrated in case studies of A Clinical Trial in Epileptic Patients.
We consider models for hierarchical count data, subject to overdispersion and/or excess zeros. Molenberghs et al. () and Molenberghs et al. () extend the Poisson-normal generalized linear-mixed model by including gamma random effects to accommodate overdispersion. Excess zeros are handled using either a zero-inflation or a hurdle component. These models were studied by Kassahun et al. (). While flexible, they are quite elaborate in parametric specification and therefore model assessment is imperative. We derive local influence measures to detect and examine influential subjects, that is subjects who have undue influence on either the fit of the model as a whole, or on specific important sub-vectors of the parameter vector. The latter include the fixed effects for the Poisson and for the excess-zeros components, the variance components for the normal random effects, and the parameters describing gamma random effects, included to accommodate overdispersion. Interpretable influence components are derived. The method is applied to data from a longitudinal clinical trial involving patients with epileptic seizures. Even though the data were extensively analyzed in earlier work, the insight gained from the proposed diagnostics, statistically and clinically, is considerable. Possibly, a small but important subgroup of patients has been identified.
Reconstruction of the ascending aorta for degenerative aneurysmal disease restores normal life expectancy, compared with an age- and sex-matched case-control population. Early mortality is consistent with the Euroscore II risk calculation. Whereas late survival progressively declines in the average population, it remains constant in the treated group after 3 years. COPD and poor functional class significantly impair survival. Valve-sparing procedures confer a similar long-term survival as valve replacement.
Since the seminal paper by Cook and Weisberg [9], local influence, next to case deletion, has gained popularity as a tool to detect influential subjects and measurements for a variety of statistical models. For the linear mixed model the approach leads to easily interpretable and computationally convenient expressions, not only highlighting influential subjects, but also which aspect of their profile leads to undue influence on the model's fit [17]. Ouwens et al. [24] applied the method to the Poisson-normal generalized linear mixed model (GLMM). Given the model's nonlinear structure, these authors did not derive interpretable components but rather focused on a graphical depiction of influence. In this paper, we consider GLMMs for binary, count, and time-to-event data, with the additional feature of accommodating overdispersion whenever necessary. For each situation, three approaches are considered, based on: (1) purely numerical derivations; (2) using a closed-form expression of the marginal likelihood function; and (3) using an integral representation of this likelihood. Unlike when case deletion is used, this leads to interpretable components, allowing not only to identify influential subjects, but also to study the cause thereof. The methodology is illustrated in case studies that range over the three data types mentioned. ARTICLE HISTORY
Competing risks data usually arise when an occurrence of an event precludes other types of events from being observed. Such data are often encountered in a clustered clinical study such as a multi-center clinical trial. For the clustered competing-risks data which are correlated within a cluster, competing-risks models allowing for frailty terms have been recently studied. To the best of our knowledge, however, there is no literature on variable selection methods for cause-specific hazard frailty models. In this article, we propose a variable selection procedure for fixed effects in cause-specific competing risks frailty models using a penalized h-likelihood (HL). Here, we study three penalty functions, LASSO, SCAD, and HL. Simulation studies demonstrate that the proposed procedure using the HL penalty works well, providing a higher probability of choosing the true model than LASSO and SCAD methods without losing prediction accuracy. The proposed method is illustrated by using two kinds of clustered competing-risks cancer data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.