The appearance and progression of human immunodeficiency virus type 1 (HIV-1)-associated pathogenesis in the immune and central nervous systems is dependent on the ability of the virus to replicate in these compartments, which is, in turn, controlled by numerous factors, including viral binding and entry, receptor and coreceptor usage, and regulation of viral expression by the long terminal repeat (LTR). The LTR promotes viral expression in conjunction with viral and cellular regulatory proteins, including members of the CCAAT/enhancer binding protein (C/EBP) family, which modulate LTR activity through at least two cis-acting binding sites. Previous studies have shown that these sites are necessary for HIV-1 replication in cells of the monocyte/macrophage lineage, but dispensable in T lymphocytes. To establish potential links between this important family of transcription factors and HIV-1-associated pathogenesis, C/EBP site I and II sequence variation in peripheral blood mononuclear cell (PBMC)-derived LTRs from HIV-1-infected patients with varying degrees of disease severity was examined. A high prevalence of C/EBP site variants 3T (site I) and consensus B (site II) within PBMC-derived HIV-1 LTRs was shown to correlate with late stage disease in HIV-1-infected patients. These results suggest that the increased prevalence in the PBMCs of HIV-1 LTRs containing the 3T C/EBP site I variant and the consensus B site II variant may serve as a molecular marker for disease progression within the immune system. The relative low or high binding affinity of C/EBP beta to sites I and II in electrophoretic mobility shift (EMS) analyses correlated with low or high LTR activity, respectively, in transient expression analyses during both early and late disease stages. The 3T C/EBP site I was the only variant examined that was not found in LTRs derived from PBMCs of patients at early stages of HIV-1 disease, but was found at increasing frequencies in patients with late stage disease. Furthermore, the 3T C/EBP site I was not found in brain-derived LTRs of patients without HIV-1-associated dementia (HIVD), but was found in increasing numbers in brain-derived LTRs from patients diagnosed with HIVD. The C/EBP site I 3T variant appears to be exclusive to patients progressing to increasingly severe HIV-1-associated immunologic and neurologic disease.
It has been widely demonstrated that the human immunodeficiency virus type 1 (HIV-1) envelope, specifically the V3 loop of the gp120 spike, evolves to facilitate adaptation to different cellular populations within an infected host. Less energy has been directed at determining whether the viral promoter, designated the long terminal repeat (LTR), also exhibits this adaptive quality. Because of the unique nature of the cell populations infected during the course of HIV-1 infection, one might expect the opportunity for such adaptation to exist. This would permit select viral species to take advantage of the different array of conditions and factors influencing transcription within a given cell type. To investigate this hypothesis, the function of natural variants of the NF-kappaB-proximal Sp element (Sp site III) was examined in human cell line models of the two major cell types infected during the natural course of HIV-1 infection, T cells and monocytes. Utilizing the HIV-1 LAI molecular clone, which naturally contains a high-affinity Sp site III, substitution of low-affinity Sp sites in place of the natural site III element markedly decreased viral replication in Jurkat T cells. However, these substitutions had relatively small effects on viral replication in U-937 monocytic cells. Transient transfections of HIV-1 LAI-based LTR-luciferase constructs into these cell lines suggest that the large reduction in viral replication in Jurkat T cells, caused by low-affinity Sp site III variants, may result from reduced basal as well as Vpr- and Tat-activated LTR activities in Jurkat T cells compared to those in U-937 monocytic cells. When the function of Sp site III was examined in the context of HIV-1 YU-2-based LTR-luciferase constructs, substitution of a high-affinity element in place of the natural low-affinity element resulted in increased basal YU-2 LTR activity in Jurkat T cells and reduced activity in U-937 monocytic cells. These observations suggest that recruitment of Sp family members to Sp site III is of greater importance to the function of the viral promoter in the Jurkat T cell line as compared to the U-937 monocytic cell line. These observations also suggest that other regions of the LTR may compensate for Sp recruitment defects in specific cell populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.