Spinal metastasis is the most common malignant disease of the spine. Recently, major advances in machine learning and artificial intelligence technology have led to their increased use in oncological imaging. The purpose of this study is to review and summarise the present evidence for artificial intelligence applications in the detection, classification and management of spinal metastasis, along with their potential integration into clinical practice. A systematic, detailed search of the main electronic medical databases was undertaken in concordance with the PRISMA guidelines. A total of 30 articles were retrieved from the database and reviewed. Key findings of current AI applications were compiled and summarised. The main clinical applications of AI techniques include image processing, diagnosis, decision support, treatment assistance and prognostic outcomes. In the realm of spinal oncology, artificial intelligence technologies have achieved relatively good performance and hold immense potential to aid clinicians, including enhancing work efficiency and reducing adverse events. Further research is required to validate the clinical performance of the AI tools and facilitate their integration into routine clinical practice.
Background: Metastatic epidural spinal cord compression (MESCC) is a disastrous complication of advanced malignancy. Deep learning (DL) models for automatic MESCC classification on staging CT were developed to aid earlier diagnosis. Methods: This retrospective study included 444 CT staging studies from 185 patients with suspected MESCC who underwent MRI spine studies within 60 days of the CT studies. The DL model training/validation dataset consisted of 316/358 (88%) and the test set of 42/358 (12%) CT studies. Training/validation and test datasets were labeled in consensus by two subspecialized radiologists (6 and 11-years-experience) using the MRI studies as the reference standard. Test sets were labeled by the developed DL models and four radiologists (2–7 years of experience) for comparison. Results: DL models showed almost-perfect interobserver agreement for classification of CT spine images into normal, low, and high-grade MESCC, with kappas ranging from 0.873–0.911 (p < 0.001). The DL models (lowest κ = 0.873, 95% CI 0.858–0.887) also showed superior interobserver agreement compared to two of the four radiologists for three-class classification, including a specialist (κ = 0.820, 95% CI 0.803–0.837) and general radiologist (κ = 0.726, 95% CI 0.706–0.747), both p < 0.001. Conclusion: DL models for the MESCC classification on a CT showed comparable to superior interobserver agreement to radiologists and could be used to aid earlier diagnosis.
Background: Early diagnosis of metastatic epidural spinal cord compression (MESCC) is vital to expedite therapy and prevent paralysis. Staging CT is performed routinely in cancer patients and presents an opportunity for earlier diagnosis. Methods: This retrospective study included 123 CT scans from 101 patients who underwent spine MRI within 30 days, excluding 549 CT scans from 216 patients due to CT performed post-MRI, non-contrast CT, or a gap greater than 30 days between modalities. Reference standard MESCC gradings on CT were provided in consensus via two spine radiologists (11 and 7 years of experience) analyzing the MRI scans. CT scans were labeled using the original reports and by three radiologists (3, 13, and 14 years of experience) using dedicated CT windowing. Results: For normal/none versus low/high-grade MESCC per CT scan, all radiologists demonstrated almost perfect agreement with kappa values ranging from 0.866 (95% CI 0.787–0.945) to 0.947 (95% CI 0.899–0.995), compared to slight agreement for the reports (kappa = 0.095, 95%CI −0.098–0.287). Radiologists also showed high sensitivities ranging from 91.51 (95% CI 84.49–96.04) to 98.11 (95% CI 93.35–99.77), compared to 44.34 (95% CI 34.69–54.31) for the reports. Conclusion: Dedicated radiologist review for MESCC on CT showed high interobserver agreement and sensitivity compared to the current standard of care.
Metastatic Spinal Cord Compression (MSCC) is a debilitating complication in oncology patients. This narrative review discusses the strengths and limitations of various imaging modalities in diagnosing MSCC, the role of imaging in stereotactic body radiotherapy (SBRT) for MSCC treatment, and recent advances in deep learning (DL) tools for MSCC diagnosis. PubMed and Google Scholar databases were searched using targeted keywords. Studies were reviewed in consensus among the co-authors for their suitability before inclusion. MRI is the gold standard of imaging to diagnose MSCC with reported sensitivity and specificity of 93% and 97% respectively. CT Myelogram appears to have comparable sensitivity and specificity to contrast-enhanced MRI. Conventional CT has a lower diagnostic accuracy than MRI in MSCC diagnosis, but is helpful in emergent situations with limited access to MRI. Metal artifact reduction techniques for MRI and CT are continually being researched for patients with spinal implants. Imaging is crucial for SBRT treatment planning and three-dimensional positional verification of the treatment isocentre prior to SBRT delivery. Structural and functional MRI may be helpful in post-treatment surveillance. DL tools may improve detection of vertebral metastasis and reduce time to MSCC diagnosis. This enables earlier institution of definitive therapy for better outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.