Fabry disease due to deficiency of α-galactosidase A (α-Gal) causes lysosomal accumulation of globotriaosylceramide (Gb3) in multiple tissues and prominently in the vascular endothelium. Although enzyme replacement therapy (ERT) by injection of recombinant α-Gal improves the disease outcome, effects on the vasculopathy associated to life-threatening cerebrovascular, cardiac and renal complications are still limited. We designed a strategy to enhance delivery of α-Gal to organs and endothelial cells (ECs). We targeted α-Gal to intercellular adhesion molecule 1 (ICAM-1), a protein expressed on ECs throughout the vasculature, by loading this enzyme on nanocarriers coated with anti-ICAM (anti-ICAM/α-Gal NCs). In vitro radioisotope tracing showed efficient loading of α-Gal on anti-ICAM NCs, stability of this formulation under storage and in model physiological fluids, and enzyme release in response to lysosome environmental conditions. In mice, delivery of 125 I-α-Gal was markedly enhanced by anti-ICAM/ 125 I-α-Gal NCs in brain, kidney, heart, liver, lung, and spleen, and transmission electron microscopy showed anti-ICAM/α-Gal NCs attached to and internalized into the vascular endothelium. Fluorescence microscopy proved targeting, endocytosis and lysosomal transport of anti-ICAM/α-Gal NCs in macro-and micro-vascular ECs, and a marked enhancement of Gb3 degradation. Therefore, ICAM-1-targeting strategy may help improve the efficacy of therapeutic enzymes for Fabry disease.
Objective Engagement of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells (ECs) by ICAM-1-targeted carriers induces cell adhesion molecule (CAM)-mediated endocytosis, providing intra-endothelial delivery of therapeutics. This pathway differs from classical endocytic mechanisms and invokes aspects of endothelial signaling during inflammation. ICAM-1 interacts with Na+/H+ exchanger NHE1 during endocytosis, but it is unclear how this regulates plasmalemma and cytoskeletal changes. We studied such aspects in this work. Methods and Results We used fluorescence and electron microscopy, inhibitors and knockout tools, cell culture and mouse models. ICAM-1 engagement by anti-ICAM carriers induced sphingomyelin-enriched engulfment structures. Acid sphingomyelinase (ASM), an acidic enzyme that hydrolyzes sphingomyelin into ceramide (involved in plasmalemma deformability and cytoskeletal reorganization), redistributed to ICAM-1-engagement sites at ceramide-enriched areas. This induced actin stress fibers and carrier endocytosis. Inhibiting ASM impaired ceramide enrichment, engulfment structures, cytoskeletal reorganization, and carrier uptake, which was rescued by supplying this enzyme activity exogenously. Interfering with NHE1 rendered similar outcomes, suggesting that Na+/H+ exchange might provide an acidic microenvironment for ASM at the plasmalemma. Conclusions These findings are consistent with the ability of ECs to internalize relatively large ICAM-1-targeted drug carriers, and expand our knowledge on the regulation of the sphingomyelin/ceramide pathway by the vascular endothelium.
Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180-nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm2 laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of ICAM-1-targeted nanocarriers by flow and endothelial status may modulate drug delivery into ECs exposed to different physiological (capillaries vs. arterioles/venules) or pathological (ischemia, inflammation) levels and patterns of blood flow.
Enzyme replacement therapies for lysosomal storage disorders are often hindered by suboptimal biodistribution of recombinant enzymes after systemic injection. This is the case for Pompe disease caused by acid α-glucosidase (GAA) deficiency, leading to excess glycogen storage through the body, mainly the liver and striated muscle. Targeting intercellular adhesion molecule-1 (ICAM-1), a protein involved in inflammation and overexpressed on most cells under pathological conditions, provides broad biodistribution and lysosomal transport of therapeutic cargoes. To improve its delivery, we coupled GAA to polymer nanocarriers (~180-nm) coated with anti-ICAM. Fluorescence microscopy showed specific targeting of anti-ICAM/GAA NCs to cells, with efficient internalization and lysosomal transport, enhancing glycogen degradation over non-targeted GAA. Radioisotope tracing in mice demonstrated enhanced GAA accumulation in all organs, including Pompe targets. Along with improved delivery of Niemann-Pick and Fabry enzymes, previously described, these results indicate that ICAM-1 targeting holds promise as a broad platform for lysosomal enzyme delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.