This article presents the evaluation of static and dynamic behavior of functionally graded ordinary (FGO) beam and functionally graded sandwich (FGSW) beam for pined–pined end condition. The variation of material properties along the thickness is assumed to follow exponential and power law. A finite element method is used assuming first order shear deformation theory for the analysis. The element chosen is different from the conventional elements as the shape functions of the element are obtained from the exact solution of the static part of governing differential equation derived according to Hamilton's principle. Moreover, the shape functions depend on length, cross-section and material properties which ensure better accuracy of the solution. The effect of power law index on critical buckling load and natural frequencies of FGO beam is investigated. The critical buckling load of FGO beam with steel-rich bottom increases with power law index whereas the trend reverses for beam with Al-rich bottom. The first three natural frequencies of FGO beam are found to decrease to a minimum value and then increase as the power law index increases from one. The dynamic stability of FGO beam with steel-rich bottom is found to be more than that of beam with Al-rich bottom. An FGSW beam with alumina as bottom skin, steel top skin, and mixture of alumina and steel as core is chosen for analysis. The critical buckling load of FGSW beam increases with the increase of core thickness for variation of material properties in core as per power law with index more than one, whereas it decreases with the increase of core thickness for variation of material properties in core as per exponential law. The first three natural frequencies of the FGSW beam increase with the increase of FGM core for both the types of property distributions. The dynamic stability of the FGSW beam is enhanced as the thickness of the FGM core is increased.
Free vibration analysis of functionally graded ordinary (FGO) and functionally graded sandwich (FGSW) rotating cantilever beam is carried out using finite element method. The properties along the thickness of FGO beam and along the thickness of the core of FGSW beam are assumed to follow power law as well as exponential law. The increase in the parameters for rotary inertia, hub radius and rotational speed, increase the first two mode frequencies of both the beams no matter how the properties vary along the thickness of beams. The effect of property distribution laws on the frequencies is found to be predominant for lower values of rotary inertia parameter and for higher values of rotational speed parameter and hub radius parameter. The first two mode frequencies of FGSW beam increase with increase in the thickness of functionally graded material (FGM) core.
Big data is an overall compatible term for any collection of data sets too large and complex. It is difficult to process them using traditional data processing applications. Here the challenges include analyzing, capturing, searching, sharing, storage, transferring, visualization, and violations of privacy. The trend to larger data sets is due to the additional information derived from analysis of a single large set of data which are related with one another, as compared to separate smaller sets with the same amount of data totally which allows correlations to be found to trends in business applications, preventing diseases and reducing crime and so on. Big data is a term that describes any huge amount of structural, semi-structural and unstructured data that has the potential to be mined for information. Big data doesn't refer to any specific quantity yet .The term is often used when speaking about petabytes and exabytes of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.