Chromosome region 1q21.1 contains extensive and complex low-copy repeats, and copy number variants (CNVs) in this region have recently been reported in association with congenital heart defects1, developmental delay2,3, schizophrenia and related psychoses4,5. We describe 21 probands with the 1q21.1 microdeletion and 15 probands with the 1q21.1 microduplication. These CNVs were inherited in most of the cases in which parental studies were available. Consistent and statistically significant features of microcephaly and macrocephaly were found in individuals with micro-deletion and microduplication, respectively. Notably, a paralog of the HYDIN gene located on 16q22.2 and implicated in autosomal recessive hydrocephalus6 was inserted into the 1q21.1 region during the evolution of Homo sapiens7; we found this locus to be deleted or duplicated in the individuals we studied, making it a probable candidate for the head size abnormalities observed. We propose that recurrent reciprocal microdeletions and microduplications within 1q21.1 represent previously unknown genomic disorders characterized by abnormal head size along with a spectrum of developmental delay, neuropsychiatric abnormalities, dysmorphic features and congenital anomalies. These phenotypes are subject to incomplete penetrance and variable expressivity.
Prader-Willi syndrome (PWS) is caused by deficiency for one or more paternally expressed imprinted transcripts within chromosome 15q11-q13, including SNURF-SNRPN and multiple small nucleolar RNAs (snoRNAs). Balanced chromosomal translocations that preserve expression of SNURF-SNRPN and centromeric genes but separate the snoRNA HBII-85 cluster from its promoter cause PWS. A microdeletion of the HBII-85 snoRNAs in a child with PWS provides, in combination with previous data, effectively conclusive evidence that deficiency of HBII-85 snoRNAs causes the key characteristics of the PWS phenotype, although some atypical features suggest that other genes in the region may make more subtle phenotypic contributions.Large interstitial deletions of paternal origin on chromosome 15q11-q13 are the cause of Prader-Willi syndrome (MIM176270) in ∼70% of cases. Most remaining affected individuals have maternal uniparental disomy 15, and some have imprinting defects. A number of paternally expressed genes mapping within this critical region have been suggested to have a role in the pathogenesis of PWS, including SNURF-SNRPN, which encodes the SNURF and SNRPN polypeptides in a single transcript. Identification of individuals with PWS with balanced translocations leaving the SNURF-SNRPN promoter and coding regions intact later excluded SNURF-SNRPN as a candidate gene 1-4 . Located within the introns of very long transcripts extending downstream of SNRPN, there are clusters of paternally expressed C/D box-containing snoRNAs that are highly expressed in the brain 5,6 . SnoRNAs represent an important subset of noncoding molecules with diverse functions, the best documented being site-specific covalent modifications of ribosomal RNAs and small nuclear RNAs by 2′-Omethylation 5,6 . The translocation cases that exclude SNURF and SNRPN as candidate genes suggest that snoRNA deficiency might cause PWS, but expression of the translocated snoRNAs in the brain could not be tested 3,4 .Here, we describe the characterization of a de novo microdeletion in an individual meeting the criteria for a diagnosis of PWS, showing all of seven major revised clinical criteria including neonatal hypotonia, feeding difficulties and failure to thrive during infancy, excessive weight gain after 18 months, hyperphagia, hypogonadism, global developmental delay and equivocal facial features (Fig. 1 This individual was found to have a deletion in the snoRNA region at 15q11.2 (Fig. 2). Arraybased comparative genomic hybridization (array CGH) using a BAC array showed a loss of copy number for two clones encompassing ∼400 kb within the 15q11-q13 PWS and Angelman Syndrome critical interval ( Supplementary Fig. 1a and Supplementary Methods online). FISH studies with the specific clones suggested a weak but not absent signal ( Supplementary Fig. 1b). To rule out deletion or imprinting abnormalities causing PWS, we carried out DNA methylation analysis of the PWS-imprinting center and found a normal methylation pattern (Fig. 2d). Chromosome analysis showed a norma...
Deletions of the PAFAH1B1 gene (encoding LIS1) in 17p13.3 result in isolated lissencephaly sequence, and extended deletions including the YWHAE gene (encoding 14-3-3ε) cause Miller-Dieker syndrome. We identified seven unrelated individuals with submicroscopic duplication in 17p13.3 involving the PAFAH1B1 and/or YWHAE genes, and using a ‘reverse genomics’ approach, characterized the clinical consequences of these duplications. Increased PAFAH1B1 dosage causes mild brain structural abnormalities, moderate to severe developmental delay and failure to thrive. Duplication of YWHAE and surrounding genes increases the risk for macrosomia, mild developmental delay and pervasive developmental disorder, and results in shared facial dysmorphologies. Transgenic mice conditionally overexpressing LIS1 in the developing brain showed a decrease in brain size, an increase in apoptotic cells and a distorted cellular organization in the ventricular zone, including reduced cellular polarity but preserved cortical cell layer identity. Collectively, our results show that an increase in LIS1 expression in the developing brain results in brain abnormalities in mice and humans.
Prader-Willi syndrome (PWS) is a neurobehavioral disorder manifested by infantile hypotonia and feeding difficulties in infancy, followed by morbid obesity secondary to hyperphagia. It is caused by deficiency of paternally expressed transcript(s) within the human chromosome region 15q11.2. PWS patients harboring balanced chromosomal translocations with breakpoints within small nuclear ribonucleoprotein polypeptide N (SNRPN) have provided indirect evidence for a role for the imprinted C/D box containing small nucleolar RNA (snoRNA) genes encoded downstream of SNRPN. In addition, recently published data provide strong evidence in support of a role for the snoRNA SNORD116 cluster (HBII-85) in PWS etiology. In this study, we performed detailed phenotypic, cytogenetic, and molecular analyses including chromosome analysis, array comparative genomic hybridization (array CGH), expression studies, and single-nucleotide polymorphism (SNP) genotyping for parent-of-origin determination of the 15q11.2 microdeletion on an 11-year-old child expressing the major components of the PWS phenotype. This child had an B236.29 kb microdeletion at 15q11.2 within the larger Prader-Willi/Angelman syndrome critical region that included the SNORD116 cluster of snoRNAs. Analysis of SNP genotypes in proband and mother provided evidence in support of the deletion being on the paternal chromosome 15. This child also met most of the major PWS diagnostic criteria including infantile hypotonia, early-onset morbid obesity, and hypogonadism. Identification and characterization of this case provide unequivocal evidence for a critical role for the SNORD116 snoRNA molecules in PWS pathogenesis. Array CGH testing for genomic copy-number changes in cases with complex phenotypes is proving to be invaluable in detecting novel alterations and enabling better genotype-phenotype correlations. European Journal of Human Genetics (2010Genetics ( ) 18, 1196Genetics ( -1201 doi:10.1038/ejhg.2010; published online 30 June 2010Keywords: Prader-Willi syndrome; snoRNA; microdeletion; array CGH INTRODUCTION Prader-Willi syndrome (PWS; MIM 176270) is a neurobehavioral disorder caused by the lack of paternal expression of imprinted genes in the human chromosome region 15q11.2q13. PWS manifests as infantile hypotonia, genital hypoplasia, and neonatal feeding difficulties, followed by hyperphagia leading to profound obesity in early childhood and into adulthood. 1,2 Large interstitial deletions of B6-6.8 Mb at 15q11.2q13 of paternal origin are the cause in over 70% of cases. The majority of the remaining cases have maternal uniparental disomy (UPD) 15, and a small percentage have imprinting defects. Deletions at 15q11.2q13 of maternal origin result in Angelman syndrome (MIM 105830). Identification and characterization of the recurrent deletion breakpoints have revealed low-copy repeat-mediated nonallelic homologous recombination as the unifying mechanism for the common deletions and duplications across this interval. 3,4 A number of paternally expressed genes mapping with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.