In recent years, energy efficiency and data gathering is a major concern in many applications of Wireless Sensor Networks (WSNs). One of the important issues in WSNs is how to save the energy consumption for prolonging the network lifetime. For this purpose, many novel innovative techniques are required to improve the energy efficiency and lifetime of the network. In this paper, we propose a novel Energy Efficient Clustering and Data Aggregation (EECDA) protocol for the heterogeneous WSNs which combines the ideas of energy efficient cluster based routing and data aggregation to achieve a better performance in terms of lifetime and stability. EECDA protocol includes a novel cluster head election technique and a path would be selected with maximum sum of energy residues for data transmission instead of the path with minimum energy consumption. Simulation results show that EECDA balances the energy consumption and prolongs the network lifetime by a factor of 51%, 35% and 10% when compared with Low-Energy Adaptive Clustering Hierarchy (LEACH), Energy Efficient Hierarchical Clustering Algorithm (EEHCA) and Effective Data Gathering Algorithm (EDGA), respectively.
Bioinformatics aids in the understanding of the biological processes of living beings and the genetic architecture of human diseases. The discovery of disease-related genes improves the diagnosis and therapy design for the disease. To save the cost and time involved in the experimental verification of the candidate genes, computational methods are employed for ranking the genes according to their likelihood of being associated with the disease. Only top-ranked genes are then verified experimentally. A variety of methods have been conceived by the researchers for the prioritization of the disease candidate genes, which differ in the data source being used or the scoring function used for ranking the genes. A review of various aspects of computational disease gene prioritization and its research issues is presented in this article. The aspects covered are gene prioritization process, data sources used, types of prioritization methods, and performance assessment methods. This article provides a brief overview and acts as a quick guide for disease gene prioritization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.