A mouse model of the human genetic disorder tuberous sclerosis complex fails to undergo developmental down-regulation of mGluR5 expression and activation of Erk signaling, probably contributing to the aberrant plasticity and epilepsy in this disease.
The synaptotagmin (syt) proteins have been widely studied for their role in regulating fusion of intracellular vesicles with the plasma membrane. Here we report that syt-17, an unusual isoform of unknown function, plays no role in exocytosis, and instead plays multiple roles in intracellular membrane trafficking. Syt-17 is localized to the Golgi complex in hippocampal neurons, where it coordinates import of vesicles from the endoplasmic reticulum to support neurite outgrowth and facilitate axon regrowth after injury. Further, we discovered a second pool of syt-17 on early endosomes in neurites. Loss of syt-17 disrupts endocytic trafficking, resulting in the accumulation of excess postsynaptic AMPA receptors and defective synaptic plasticity. Two distinct pools of syt-17 thus control two crucial, independent membrane trafficking pathways in neurons. Function of syt-17 appears to be one mechanism by which neurons have specialized their secretory and endosomal systems to support the demands of synaptic communication over sprawling neurite arbors.
Complex neurological conditions can give rise to large scale transcriptomic changes that drive disease progression. It is likely that alterations in one or a few transcription factors or cofactors underlie these transcriptomic alterations. Identifying the driving transcription factors/cofactors is a non-trivial problem and a limiting step in the understanding of neurological disorders. Epilepsy has a prevalence of 1% and is the fourth most common neurological disorder. While a number of anti-seizure drugs exist to treat seizures symptomatically, none is curative or preventive. This reflects a lack of understanding of disease progression. We used a novel systems approach to mine transcriptome profiles of rodent and human epileptic brain samples to identify regulators of transcriptional networks in the epileptic brain. We find that Enhancer of Zeste Homolog 2 (EZH2) regulates differentially expressed genes in epilepsy across multiple rodent models of acquired epilepsy. EZH2 undergoes a prolonged upregulation in the epileptic brain. A transient inhibition of EZH2 immediately after status epilepticus (SE) robustly increases spontaneous seizure burden weeks later. This suggests that EZH2 upregulation is a protective. These findings are the first to characterize a role for EZH2 in opposing epileptogenesis and debut a bioinformatic approach to identify nuclear drivers of complex transcriptional changes in disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.